Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The m...Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The morphology and microstructure of the micro-sized and the nano-sized Fe3O4 particles were characterized by X-ray diffraction,field-emission gun scanning electron microscopy,transmission electron microscopy and highresolution electron microscopy.The micro-sized Fe3O4 particles exhibit porous structure,while the nano-sized Fe3O4 particles are solid structure.Their electrochemical performance was also evaluated.The nano-sized solid Fe3O4 particles exhibit gradual capacity fading with initial discharge capacity of 1083.1 mAhg-1 and reversible capacity retention of 32.6% over 50 cycles.Interestingly,the micro-sized porous Fe3O4 particles display very stable capacity-cycling behavior,with initial discharge capacity of 887.5 mAhg-1 and charge capacity of 684.4 mAhg-1 at the 50th cycle.Therefore,77.1% of the reversible capacity can be maintained over 50 cycles.The micro-sized porous Fe3O4 particles with facile synthesis,good cycling performance and high capacity retention are promising candidate as anode materials for high energy-density lithium-ion batteries.展开更多
TiO 2 nanowires were synthesized successfully in a large quantity by thermal evaporation using titanium monoxide powder as precursor. X-ray diffraction results showed that all the products were pure rutile phase of Ti...TiO 2 nanowires were synthesized successfully in a large quantity by thermal evaporation using titanium monoxide powder as precursor. X-ray diffraction results showed that all the products were pure rutile phase of TiO 2 . According to microstructural observations, the nanowires have two typical morphologies, a long straight type and a short tortuous type. The straight nanowires were obtained at a wide temperature range of 900–1050 ℃, while the tortuous ones were formed below 900 ℃. Transmission electron microscopy characterization revealed that both the straight and the tortuous nanowires are single-crystal rutile TiO 2 . The preferential growth direction of the nanowires was determined as [110] orientation according to electron diffraction and high-resolution image analyses. The morphological change of TiO 2 nanowires was discussed by considering the different atomic diffusion rates of Ti atoms caused by the phase transformation in Ti substrate at around 900 ℃.展开更多
基金supported by the National Natural Science Foundation of China (Grand No. 50872032)the financial support from the Hundred Talents Program of the Chinese Academy of Sciencesthe National Basic Research Program of China(Grant No. 2010CB631006)
文摘Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The morphology and microstructure of the micro-sized and the nano-sized Fe3O4 particles were characterized by X-ray diffraction,field-emission gun scanning electron microscopy,transmission electron microscopy and highresolution electron microscopy.The micro-sized Fe3O4 particles exhibit porous structure,while the nano-sized Fe3O4 particles are solid structure.Their electrochemical performance was also evaluated.The nano-sized solid Fe3O4 particles exhibit gradual capacity fading with initial discharge capacity of 1083.1 mAhg-1 and reversible capacity retention of 32.6% over 50 cycles.Interestingly,the micro-sized porous Fe3O4 particles display very stable capacity-cycling behavior,with initial discharge capacity of 887.5 mAhg-1 and charge capacity of 684.4 mAhg-1 at the 50th cycle.Therefore,77.1% of the reversible capacity can be maintained over 50 cycles.The micro-sized porous Fe3O4 particles with facile synthesis,good cycling performance and high capacity retention are promising candidate as anode materials for high energy-density lithium-ion batteries.
基金supported by the Hundred Talents Program of the Chinese Academy of Sciences,Shenyang Science and Technology Project (Grant No.F11-264-1-65)the National Basic Research Program of China (Grant No. 2010CB631006)the Major National Science and Technology Program of China (GrantNo. 2011ZX02602)
文摘TiO 2 nanowires were synthesized successfully in a large quantity by thermal evaporation using titanium monoxide powder as precursor. X-ray diffraction results showed that all the products were pure rutile phase of TiO 2 . According to microstructural observations, the nanowires have two typical morphologies, a long straight type and a short tortuous type. The straight nanowires were obtained at a wide temperature range of 900–1050 ℃, while the tortuous ones were formed below 900 ℃. Transmission electron microscopy characterization revealed that both the straight and the tortuous nanowires are single-crystal rutile TiO 2 . The preferential growth direction of the nanowires was determined as [110] orientation according to electron diffraction and high-resolution image analyses. The morphological change of TiO 2 nanowires was discussed by considering the different atomic diffusion rates of Ti atoms caused by the phase transformation in Ti substrate at around 900 ℃.