The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces exi...The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of micro- laminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size- dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plas- tic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engi- neers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qual- ities the interfaces in NMMs display at atomic scale.展开更多
The plastic deformation of amorphous alloys is well known to be localized into shear bands(SBs),which are believed to stem from the atomic-scale flow defects,i.e.,shear transformation zones(STZs).Yet,the bridge betwee...The plastic deformation of amorphous alloys is well known to be localized into shear bands(SBs),which are believed to stem from the atomic-scale flow defects,i.e.,shear transformation zones(STZs).Yet,the bridge between the mesoscopic SBs and the atomic-scale STZs remains poorly understood.In this work,through thermally activating pronouncedβrelaxations in the well-designed crystalline-layer confined amorphous(CLCA)Ni W alloy films,we experimentally captured and observed an intermediate nanosized structure termed as“nano shear bands”(NSBs)with a typical size of 1–2 nm in thickness and5–10 nm in length.The influences of such NSB structures on the macroscale deformation behavior were systematically investigated.It was found that NSBs lead to both hardening and toughening effects for the CLCA films,as they promote multiple and controlled shear banding deformation,which results in enhanced crystallization.The intermediate NSB structure could connect the microstructural characteristics and macroscopic plasticity in amorphous alloys and may provide new insights for understanding the microscopic deformation mechanism of amorphous alloys as well as tuning/designing their properties.展开更多
Achieving homogeneous plastic deformation in metallic glasses is a long-standing goal yet to be solved in materials science. Here we investigate the effect of ion irradiation on the plastic deformation behavior of ZrC...Achieving homogeneous plastic deformation in metallic glasses is a long-standing goal yet to be solved in materials science. Here we investigate the effect of ion irradiation on the plastic deformation behavior of ZrCu/ZrCuNiAlSi amorphous/amorphous nanolaminates(A/ANLs) via nanoindentation testing. The experimental results indicate a dramatic change in deformation mode from multiple shear banding events to homogeneous compressive deformation before and after ion irradiation on the A/ANLs in the areas underneath the indenter. Ion irradiation-induced changes of both fraction and distribution of free volume inside each constituent layer and interfacial state in the A/ANLs may be responsible for the unusual homogeneous deformation behavior. Our results suggest that the mechanical property of A/ANLs could be modified by tuning both the inner and interfacial structure via ion irradiation.展开更多
Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limi...Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limit on its partial branching fraction for photon energies E_(γ)>10 MeV was determined to be 1.2×10^(-5)at a 90%confidence level;this excludes most current theoretical predictions.A sophisticated deep learning approach,which includes thorough validation and is based on the Transformer architecture,was implemented to efficiently distinguish the signal from massive backgrounds.展开更多
Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No s...Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No significant signal is observed,and the upper limit on the branching fraction ofω→π^(+)π^(+)e^(-)e^(-)+c.c.at the 90%confidence level is determined for the first time to be 2.8×10^(-6).展开更多
Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed h...Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed hadronic decaysΛ_(c)^(+)→Σ^(0)K^(+)π^(0)andΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−)and with a single-tag method.No significant signals were observed for both decays.The upper limits on the branching fractions at the 90%confidence level were determined to be 5.0×10^(-4)for and forΛ_(c)^(+)→Σ^(0)K^(+)π^(0)and 6.5×10^(-4)forΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−).展开更多
基金supported by the National Natural Science Foundation of China (Grants 51171141, 51271141, and 51471131)the Program for New Century Excellent Talents in University (Grant NCET-11-0431)
文摘The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of micro- laminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size- dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plas- tic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engi- neers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qual- ities the interfaces in NMMs display at atomic scale.
基金financially supported by the Guangdong Major Project of Basic and Applied Basic ResearchChina(No.2019B030302010)+8 种基金the Guangdong Basic and Applied Basic Research FoundationChina(Nos.2021A1515010756,2019B1515130005)the Natural Science Foundation of Jiangsu ProvinceChina(No.BK20180266)the National Natural Science Foundation of China(Nos.51471131,52071222,51822107,11972037,52001269,52101199,52001219)the FundamentalResearch Funds for the Central Universitiesthe National Key Research and Development Plan(No.2018YFA0703603)the Strategic Priority Research Program of Chinese Academy of Sciences with Grant No.XDB30000000the Tianshan Innovation Team Program of Xinjiang Uygur Autonomous Region(No.2020D14038)。
文摘The plastic deformation of amorphous alloys is well known to be localized into shear bands(SBs),which are believed to stem from the atomic-scale flow defects,i.e.,shear transformation zones(STZs).Yet,the bridge between the mesoscopic SBs and the atomic-scale STZs remains poorly understood.In this work,through thermally activating pronouncedβrelaxations in the well-designed crystalline-layer confined amorphous(CLCA)Ni W alloy films,we experimentally captured and observed an intermediate nanosized structure termed as“nano shear bands”(NSBs)with a typical size of 1–2 nm in thickness and5–10 nm in length.The influences of such NSB structures on the macroscale deformation behavior were systematically investigated.It was found that NSBs lead to both hardening and toughening effects for the CLCA films,as they promote multiple and controlled shear banding deformation,which results in enhanced crystallization.The intermediate NSB structure could connect the microstructural characteristics and macroscopic plasticity in amorphous alloys and may provide new insights for understanding the microscopic deformation mechanism of amorphous alloys as well as tuning/designing their properties.
基金financial support from the National Natural Science Foundation of China (No. 51471131)the Natural Science Foundation of Shaanxi Province (No. 2019TD-020)+4 种基金National Science Basic Research Plan in shaanxi Province of China (No. 2020JM-41)financial support from the Fundamental Research Funds for the Central Universities (No. 021314380118)the Natural Science Foundation of Jiangsu Province, China (No. BK20180266)financial support from Fundamental Research Funds for the Central UniversitiesNational Science Basic Research Plan in shaanxi Province of China (No. 2020JM-33)。
文摘Achieving homogeneous plastic deformation in metallic glasses is a long-standing goal yet to be solved in materials science. Here we investigate the effect of ion irradiation on the plastic deformation behavior of ZrCu/ZrCuNiAlSi amorphous/amorphous nanolaminates(A/ANLs) via nanoindentation testing. The experimental results indicate a dramatic change in deformation mode from multiple shear banding events to homogeneous compressive deformation before and after ion irradiation on the A/ANLs in the areas underneath the indenter. Ion irradiation-induced changes of both fraction and distribution of free volume inside each constituent layer and interfacial state in the A/ANLs may be responsible for the unusual homogeneous deformation behavior. Our results suggest that the mechanical property of A/ANLs could be modified by tuning both the inner and interfacial structure via ion irradiation.
基金supported in part by National Key R&D Program of China(2020YFA0406400,2023YFA1606000,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+18 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS(YSBR-101)100 Talents Program of CASCAS Project for Young Scientists in Basic Research(YSBR-117)The Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyAgencia Nacional de Investigación y Desarrollo de Chile(ANID),Chile(ANID PIA/APOYO AFB230003)German Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B50G670107)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)The Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limit on its partial branching fraction for photon energies E_(γ)>10 MeV was determined to be 1.2×10^(-5)at a 90%confidence level;this excludes most current theoretical predictions.A sophisticated deep learning approach,which includes thorough validation and is based on the Transformer architecture,was implemented to efficiently distinguish the signal from massive backgrounds.
基金Supported in part by National Key R&D Program of China(2023YFA1606000,2023YFA1606704)National Natural Science Foundation of China(NSFC)(12035009,11875170,11635010,11935015,11935016,11935018,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Program,CAS(YSBR-101)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyAgencia Nacional de Investigación y Desarrollo de Chile(ANID)Chile(ANID PIA/APOYO AFB230003)ERC(758462)German Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaPolish National Science Centre(2024/53/B/ST2/00975)STFC(United Kingdom)Swedish Research Council(2019.04595)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No significant signal is observed,and the upper limit on the branching fraction ofω→π^(+)π^(+)e^(-)e^(-)+c.c.at the 90%confidence level is determined for the first time to be 2.8×10^(-6).
基金supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400,2023YFA1606000)National Natural Science Foundation of China(NSFC)(12205141,11635010,11735014,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+16 种基金Natural Science Foundation of Hunan Province(2024JJ2044)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076,B50G670107)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)The Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed hadronic decaysΛ_(c)^(+)→Σ^(0)K^(+)π^(0)andΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−)and with a single-tag method.No significant signals were observed for both decays.The upper limits on the branching fractions at the 90%confidence level were determined to be 5.0×10^(-4)for and forΛ_(c)^(+)→Σ^(0)K^(+)π^(0)and 6.5×10^(-4)forΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−).