期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Thermodynamics-based unsaturated hydro-mechanical-chemical coupling model for wellbore stability analysis in chemically active gas formations
1
作者 Jinhua Liu Tianshou Ma +3 位作者 Jianhong Fu Jiajia Gao Dmitriy A.Martyushev p.g.ranjith 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3644-3661,共18页
A thermodynamics-based unsaturated hydro-mechanical-chemical(HMC)coupling model is developed to analyze the coupled response and stability of boreholes in chemically active gas formations.The newly coupled constitutiv... A thermodynamics-based unsaturated hydro-mechanical-chemical(HMC)coupling model is developed to analyze the coupled response and stability of boreholes in chemically active gas formations.The newly coupled constitutive relations are formulated by incorporating the chemical effect into the solid-gasliquid unsaturated framework to account for the interactions between rock deformation,gas-liquid two-phase flow,and chemical potential difference.Compared with previous models,the present model shows significant prediction differences in field variables and wellbore stability evolution.The maximum absolute difference of pore pressure,effective radial stress,effective tangential stress,and collapse pressure can reach 8.98 MPa,7.64 MPa,7.29 MPa,7.65 MPa,respectively.It is more conservative to select a long-term wellbore collapse pressure rather than a short-term one to guide drilling operations.The two-phase flow behavior,jointly controlled by wellbore pressure,capillary pressure,and chemical osmosis effect,provides a more realistic observation of the mud intrusion process.Compared with low salinity muds,high salinity muds can effectively impede the mud intrusion into the formation,which is more conducive to preventing wellbore collapse,but at the same time increases the risk of wellbore fracture.Sensitivity analysis shows that solute diffusion and reflection coefficients affect early wellbore stability through pore pressure and solute transport,while the chemical swelling coefficient has a long-term effect through chemically induced deformation.The results can provide theoretical guidance for quantitative optimization of mud parameters and prevention of wellbore instability when drilling in chemically active gas formations. 展开更多
关键词 Chemically active formation Gas formation Two-phase flow Wellbore stability Hydro-mechanical-chemical coupling'Thermodynamics
在线阅读 下载PDF
Discrete element modeling on the crack evolution behavior of brittle sandstone containing three fissures under uniaxial compression 被引量:12
2
作者 Sheng-Qi Yang Yan-Hua Huang +2 位作者 p.g.ranjith Yu-Yong Jiao Jian Ji 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第6期871-889,共19页
Based on experimental restilts of brittle, intact sandstone under uniaxial compression, the micro-parameters were firstly confirmed by adopting particle flow code (PFC2D). Then, the validation of the simulated model... Based on experimental restilts of brittle, intact sandstone under uniaxial compression, the micro-parameters were firstly confirmed by adopting particle flow code (PFC2D). Then, the validation of the simulated models were cross checked with the experimental results of brittle sandstone containing three parallel fissures under uniaxial compression. The simulated results agreed very well with the experimental results, including the peak strength, peak axial strain, and ultimate failure mode. Using the same micro- parameters, the numerical models containing a new geometry of three fissures are constructed to investigate the fissure angle on the fracture mechanical behavior of brittle sandstone under uniaxial compression. The strength and deformation parameters of brittle sandstone containing new three fissures are dependent to the fissure angle. With the increase of the fis- sure angle, the elastic modulus, the crack damage threshold, and the peak strength of brittle sandstone containing three fissures firstly increase and secondly decrease. But the peak axial strain is nonlinearly related to the fissure angle. In the entire process of deformation, the crack initiation and propagation behavior of brittle sandstone containing three fissures under uniaxial compression are investigated with respect to the fissure angle. Six different crack coalescence modes are identified for brittle sandstone containing three fissures under uniaxial compression. The influence of the fissure angle on the length of crack propagation and crack coalescence stress is evaluated. These investigated conclusions are very important for ensuring the stability and safety of rock engineering with intermittent structures. 展开更多
关键词 Brittle sandstone ·PFC2D Three fissures ·Crack initiation Crack propagation Crack coalescence
在线阅读 下载PDF
Experimental investigations on effects of gas pressure on mechanical behaviors and failure characteristic of coals 被引量:4
3
作者 Yi Xue p.g.ranjith +2 位作者 Feng Gao Zhizhen Zhang Songhe Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期412-428,共17页
The mechanical behavior of coal is the key factor affecting underground coal mining and coalbed methane extraction.In this study,triaxial compression and seepage tests were carried out on coal at different gas pressur... The mechanical behavior of coal is the key factor affecting underground coal mining and coalbed methane extraction.In this study,triaxial compression and seepage tests were carried out on coal at different gas pressures.The mechanical properties and failure process of coal were studied,as well as the acoustic emission(AE)and strain energy.The influence of gas pressure on the mechanical parameters of this coal was analyzed.Based on the conventional energy calculation formula,the pore pressure was introduced through the effective stress formula,and each energy component of coal containing gas was refined innovatively.The contribution of gas pressure to the total energy input and dissipation during loading was quantitatively described.Finally,the influence of gas pressure on coal strength was theo-retically analyzed from the perspectives of MohreCoulomb criterion and fracture mechanics.The results show that the total absorbed energy comprises the absorbed energy in the axial pressure direction(positive)and in the confining pressure direction(negative),as well as that induced by the pore pressure(initially negative and then positive).The absorbed energy in the axial pressure direction accounts for the main proportion of the total energy absorbed by coal.The quiet period of AE in the initial stage shortens,and AE activity increases during the pre-peak stage under high gas pressure.The fractal characteristics of AE in three stages are studied using the correlation dimension.The AE process has different forms of self-similarity in various deformation stages. 展开更多
关键词 COAL Gas pressure Acoustic emission(AE) Strain energy Fractal characteristics
在线阅读 下载PDF
Crushing and embedment of proppant packs under cyclic loading: An insight to enhanced unconventional oil/gas recovery 被引量:3
4
作者 K.M.A.S.Bandara p.g.ranjith +2 位作者 T.D.Rathnaweera W.A.M.Wanniarachchi S.Q.Yang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第6期376-393,共18页
Crushing and embedment are two critical downhole proppant degradation mechanisms that lead to a significant drop in production outputs in unconventional oil/gas stimulation projects. These persistent production drops ... Crushing and embedment are two critical downhole proppant degradation mechanisms that lead to a significant drop in production outputs in unconventional oil/gas stimulation projects. These persistent production drops due to the non-linear responses of proppants under reservoir conditions put the future utilization of such advanced stimulation techniques in unconventional energy extraction in doubt. The aim of this study is to address these issues by conducting a comprehensive experimental approach. According to the results, whatever the type of proppant, all proppant packs tend to undergo significant plastic deformation under the first loading cycle.Moreover, the utilization of ceramic proppants(which retain proppant pack porosity up to 75%), larger proppant sizes(which retain proppant pack porosity up to 15.2%) and higher proppant concentrations(which retain proppant pack porosity up to 29.5%) in the fracturing stimulations with higher in-situ stresses are recommended to de-escalate the critical consequences of crushing associated issues. Similarly, the selection of resin-coated proppants over ceramic and sand proppants may benefit in terms of obtaining reduced proppant embedment.In addition, selection of smaller proppant sizes and higher proppant concentrations are suggested for stimulation projects at depth with sedimentary formations and lower in-situ stresses where proppant embedment predominates. Furthermore, correlation between proppant embedment with repetitive loading cycles was studied.Importantly, microstructural analysis of the proppant-embedded siltstone rock samples revealed that the initiation of secondary induced fractures. Finally, the findings of this study can greatly contribute to accurately select optimum proppant properties(proppant type, size and concentration) depending on the oil/gas reservoir characteristics to minimize proppant crushing and embedment effects. 展开更多
关键词 PROPPANT Micro-CT analysis Proppant crushing Proppant embedment Secondary induced fractures Cyclic loading
在线阅读 下载PDF
Performances of fissured red sandstone after thermal treatment with constant-amplitude and low-cycle impacts 被引量:1
5
作者 Yongjun Chen Tubing Yin +3 位作者 p.g.ranjith Xibing Li Qiang Li Dengdeng Zhuang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期561-587,共27页
In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandston... In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandstone considering temperatures(25℃,200℃,400℃,600℃,and 800℃)and fissure angles(0°,30°,60°,and 90°)were evaluated under constant-amplitude and low-cycle(CALC)impacts actuated by a modified split Hopkinson pressure bar(SHPB)system.Subsequently,fracture morphology and second-order statistics within the grey-level co-occurrence matrix(GLCM)were examined using scanning electron microscopy(SEM).Meanwhile,the deep analysis and discussion of the mechanical response were conducted through the synchronous thermal analyzer(STA)test,numerical simulations,one-dimensional stress wave theory,and material structure.The multiple regression models between response variables and interactive effects of independent variables were established using the response surface method(RSM).The results demonstrate the fatigue strength and life diminish as temperatures rise and increase with increasing fissure angles,while the strain rate exhibits an inverse behavior.Furthermore,the peak stress intensification and strain rate softening observed during CALC impact exhibit greater prominence at increased fissure angles.The failure is dominated by tensile damage with concise evolution paths and intergranular cracks as well as the compressor-crushed zone which may affect the failure mode after 400℃.The second-order statistics of GLCM in SEM images exhibit a considerable dependence on the temperatures.Also,thermal damage dominated by thermal properties controls the material structure and wave impedance and eventually affects the incident wave intensity.The tensile wave reflected from the fissure surface is the inherent mechanism responsible for the angle effect exhibited by the fatigue strength and life.Ultimately,the peak stress intensification and strain rate softening during impact are determined by both the material structure and compaction governed by thermal damage and tensile wave. 展开更多
关键词 Red sandstone Temperature FISSURE Constant-amplitude and low-cycle(CALC) impact Fatigue failure Response surface method(RSM)
在线阅读 下载PDF
Direct Evidence of Coal Swelling and Shrinkage with Injecting CO_(2) and N_(2) Using in-situ Synchrotron X-ray Microtomography 被引量:1
6
作者 Guanglei Zhang p.g.ranjith Herbert E.Huppert 《Engineering》 SCIE EI CAS 2022年第11期88-95,共8页
Deep coal seams are one of the world’s most widespread deposits for carbon dioxide(C02)disposal and are generally located near large point sources of CO_(2)emissions.The injection of CO_(2)into coal seams has great p... Deep coal seams are one of the world’s most widespread deposits for carbon dioxide(C02)disposal and are generally located near large point sources of CO_(2)emissions.The injection of CO_(2)into coal seams has great potential to sequester CO_(2)while simultaneously enhancing coalbed methane(CO_(2)-ECBM)recovery.Pilot tests of CO_(2)-ECBM have been conducted in coal seams worldwide with favorable early results.However,one of the main technical barriers in coal seams needs to be resolved:Injecting CO_(2)reduces coal permeability and well injectivity.Here,using in situ synchrotron X-ray microtomography,we provide the first observational evidence that injecting nitrogen(N_(2))can reverse much of this lost permeability by reopening fractures that have closed due to coal swelling induced by CO_(2)adsorption.Our findings support the notion that injecting minimally treated flue gas-a mixture of mainly N_(2) and CO_(2)-is an attractive alternative for ECBM recovery instead of pure CO_(2)injection in deep coal seams.Firstly,flue gas produced by power plants could be directly injected after particulate removal,thus avoiding high CO_(2)-separation costs.Secondly,the presence of N_(2)makes it possible to maintain a sufficiently high level of coal permeability.These results suggest that flue-gas ECBM for deep coal seams may provide a promising path toward net-zero emissions from coal mines. 展开更多
关键词 CCS CO_(2)-ECBM Carbon neutrality X-ray imaging Coal permeability
在线阅读 下载PDF
Experimental study on the influence of hydrostatic stress on the Lode angle effect of porous rock
7
作者 Zhenlong Song Zhenguo Zhang +2 位作者 p.g.ranjith Wanchun Zhao Chao Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第4期727-735,共9页
To investigate the deformation mechanisms of rock under hydrostatic stress, destructive experiments were conducted on sandstone under different levels of hydrostatic stress and stress Lode angles. The results reveal t... To investigate the deformation mechanisms of rock under hydrostatic stress, destructive experiments were conducted on sandstone under different levels of hydrostatic stress and stress Lode angles. The results reveal that the shape of the strength envelope on the π plane gradually changes from the shape of the Lade criterion to the shape of the Drucker-Prage criterion with an increase in hydrostatic stress.Normally, there exists a deviation between the strain and stress paths for porous rocks on the π plane,and the deviation decreases with an increase in stress Lode angle and hydrostatic stress. A rock failure hypothesis based on the rock porous structure was proposed to investigate the reasons for the abovementioned phenomena. It was found that the shear expansion in the minimum principal stress direction is the dominant factor affecting the Lode angle effect(LAE);the magnitude of the hydrostatic stress induces the variation of the porous structure and influences the shear expansion. Therefore, the hydrostatic stress state affects the LAE. The failure hypothesis proposed in this paper can clarify the hydrostatic stress effect, LAE, and the variation of the rock strength envelope shape. 展开更多
关键词 Lode angle effect Hydrostatic stress effect Strength envelope curve Porous structure
在线阅读 下载PDF
Grain-based coupled thermo-mechanical modeling for stressed heterogeneous granite under thermal shock
8
作者 Zheng Yang Ming Tao +2 位作者 Wenbin Fei Tubing Yin p.g.ranjith 《Underground Space》 2025年第1期174-196,共23页
Microscopic damage and macroscopic mechanical properties of granite under the coupling effect of thermal load and initial stress are crucial considerations for the safe construction of underground geo-energy engineeri... Microscopic damage and macroscopic mechanical properties of granite under the coupling effect of thermal load and initial stress are crucial considerations for the safe construction of underground geo-energy engineering.However,visualizing real-time micro-crack pro-cesses in rocks under high-temperature and high-pressure conditions using the current experimental techniques remains challenging.In this study,a numerical method is developed to analyze the thermally induced damage in heterogeneous granite under the coupled influ-ence of initial stress and thermal loading.A biaxial thermo-mechanical grain-based model considering real mineral distribution is estab-lished based on digital image processing technology,the grain-based modeling method,and heat conduction theory.The microscopic parameters are calibrated and the effectiveness of the model is verified based on thermal shock and uniaxial compression experiments.The thermal destruction mechanism of granite under initial stress from a microscopic perspective was unveiled for the first time.During the thermal shock process,the stress within the rock does not remain constant at the initial stress value.Instead,it changes continuously with the progression of heat conduction.The impact of the initial stress on the thermally induced cracks is relatively minor.Cooling causes more damage to the rock than heating during thermal shock.The intragranular cracks of quartz consistently outnumber other intragranular or intergranular cracks during thermal shock.The initial stress and thermal shock damage enhance and weaken the biaxial peak strength of granite,respectively.The weakening effect of thermal shock on the peak strength becomes more pronounced at a higher initial stress.These research findings and proposed research techniques contribute to the management and optimization of underground geo-energy engineering. 展开更多
关键词 Thermo mechanical coupling Initial stress Biaxial loading Thermal stress Grain based model
在线阅读 下载PDF
Three-dimensional failure behavior and cracking mechanism of rectangular solid sandstone containing a single fissure under triaxial compression 被引量:5
9
作者 Sheng-Qi Yang Wen-Ling Tian +3 位作者 p.g.ranjith Xiang-Ru Liu Miao Chen Wu Cai 《Rock Mechanics Bulletin》 2022年第1期126-148,共23页
In actual rock engineering,fissures play an important role in determining the mechanical parameters of rock mass,whereas it is very difficult to construct fissures in cylindrical specimens.Therefore,the pre-fissured r... In actual rock engineering,fissures play an important role in determining the mechanical parameters of rock mass,whereas it is very difficult to construct fissures in cylindrical specimens.Therefore,the pre-fissured rectangular rock specimens were constructed innovatively.Moreover,a series of triaxial compression experimental results on the failure mechanical behavior of rectangular solid sandstone specimens containing a single fissure were reported.The lateral strain in different directions was monitored and the experimental results show that elastic modulus and axial strain increase non-linearly with confining pressure,and the average Poisson’s ratio parallel to fissure(μ2)is larger than that vertical to fissure(μ3).The cohesion,Hoek-Brown parameters of peak strength show similar trends with that of crack damage threshold to the fissure angle(α),and the parameters of the peak strength are larger than those of crack damage threshold.However,the internal friction angles of the peak strength and crack damage threshold are almost equal.Based on the geometries and properties of cracks,ten typical crack types are identified.Cracks vertical to pre-existing fissures occur in specimens under uniaxial compression,whereas cracks parallel to pre-existing fissures occur under triaxial compression.Finally,X-ray micro-computed tomography(CT)observations are conducted to analyze the internal damage mechanism of sandstone specimens with respect to various fissure angles.Reconstructed 3-D CT images indicate obvious effects of confining pressure and fissure angle on the crack system of sandstone specimens.This research elucidates the fundamental nature of rock failure under triaxial compression. 展开更多
关键词 Rectangular solid sandstone Single fissure Triaxial deformation Peak strength Damage behavior X-ray micro-CT
在线阅读 下载PDF
Evaluation on the anisotropic brittleness index of shale rock using geophysical logging
10
作者 Junchuan Gui Jianchun Guo +3 位作者 Yu Sang Yaxi Chen Tianshou Ma p.g.ranjith 《Petroleum》 EI CSCD 2023年第4期545-557,共13页
The brittleness index plays a significant role in the hydraulic fracturing design and wellbore stability analysis of shale reservoirs.Various brittleness indices have been proposed to characterize the brittleness of s... The brittleness index plays a significant role in the hydraulic fracturing design and wellbore stability analysis of shale reservoirs.Various brittleness indices have been proposed to characterize the brittleness of shale rocks,but almost all of them ignored the anisotropy of the brittleness index.Therefore,uniaxial compression testing integrated with geophysical logging was used to provide insights into the anisotropy of the brittleness index for Longmaxi shale,the presented method was utilized to assess brittleness index of Longmaxi shale formation for the interval of 3155e3175 m in CW-1 well.The results indicated that the brittleness index of Longmaxi shale showed a distinct anisotropy,and it achieved the minimum value at β=45°-60°.As the bedding angle increased,the observed brittleness index(BI_(2_β))decreased firstly and increased then,it achieved the lowest value at β=40°-60°,and it is consistent with the uniaxial compression testing results.Compared to the isotropic brittleness index(β=0°),the deviation of the anisotropic brittleness index ranged from 10%to 66.7%,in other words,the anisotropy of brittleness index cannot be ignored for Longmaxi shale.Organic matter content is one of the main intrinsic causes of shale anisotropy,and the anisotropy degree of the brittleness index generally increases with the increase in organic matter content.The present work is valuable for the assessment of anisotropic brittleness for hydraulic fracturing design and wellbore stability analysis. 展开更多
关键词 Shale rock BRITTLENESS Brittleness index ANISOTROPY Transverse isotropy Geophysical logging
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部