期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CBBM-WARM:A Workload-Aware Meta-Heuristic for Resource Management in Cloud Computing 被引量:1
1
作者 K Nivitha p pabitha R praveen 《China Communications》 2025年第6期255-275,共21页
The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achievi... The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks. 展开更多
关键词 autonomic resource management cloud computing coot bird behavior model SLA violation cost WORKLOAD
在线阅读 下载PDF
An Efficient Approach to Escalate the Speed of Training Convolution Neural Networks
2
作者 p pabitha Anusha Jayasimhan 《China Communications》 SCIE CSCD 2024年第2期258-269,共12页
Deep neural networks excel at image identification and computer vision applications such as visual product search, facial recognition, medical image analysis, object detection, semantic segmentation,instance segmentat... Deep neural networks excel at image identification and computer vision applications such as visual product search, facial recognition, medical image analysis, object detection, semantic segmentation,instance segmentation, and many others. In image and video recognition applications, convolutional neural networks(CNNs) are widely employed. These networks provide better performance but at a higher cost of computation. With the advent of big data, the growing scale of datasets has made processing and model training a time-consuming operation, resulting in longer training times. Moreover, these large scale datasets contain redundant data points that have minimum impact on the final outcome of the model. To address these issues, an accelerated CNN system is proposed for speeding up training by eliminating the noncritical data points during training alongwith a model compression method. Furthermore, the identification of the critical input data is performed by aggregating the data points at two levels of granularity which are used for evaluating the impact on the model output.Extensive experiments are conducted using the proposed method on CIFAR-10 dataset on ResNet models giving a 40% reduction in number of FLOPs with a degradation of just 0.11% accuracy. 展开更多
关键词 CNN deep learning image classification model compression
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部