期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
生菜低温等离子雾培水基固氮试验研究 被引量:1
1
作者 沈鹏飞 ABDALLAH Harold Mosha +2 位作者 osama elsherbiny WAQAR Ahmed Qureshi 高建民 《农业工程学报》 北大核心 2025年第11期193-200,共8页
开发高效环保的固氮技术对农业可持续发展至关重要。为探索低温等离子体水基固氮在雾化栽培中的可行性,该研究将雾培箱内气溶胶作为氢源,与通过针-针电极放电(15 kV电压、300 K温度、标准大气压)生成的等离子活化雾(plasma activated mi... 开发高效环保的固氮技术对农业可持续发展至关重要。为探索低温等离子体水基固氮在雾化栽培中的可行性,该研究将雾培箱内气溶胶作为氢源,与通过针-针电极放电(15 kV电压、300 K温度、标准大气压)生成的等离子活化雾(plasma activated mist,PAM)发生电化学反应实现雾培箱内水基固氮。数值模拟表明,等离子电极间电子数密度达1.93×10^(18)(1/m^(3)),生成NH3和O3浓度分别为0.21、0.304μmol/L。试验采用等离子发生器(AIRNASA KJF04)进行生菜雾培,结果表明:与普通雾培(PG-0)相比,等离子雾培组(PG-1)生菜叶片茎长、根长和叶面积分别提升34.51%、22.76%和19.62%,等离子雾培组(PG-3)生菜叶片氮含量、茎长、根长和叶面积分别提升17.84%、71.49%、42.36%和53.85%,且42 d总能耗仅增加0.14 kW·h。PAM中活性氧化物和活性氮化物通过调控根系吸收效率与光合作用,促进生菜生长,同时降低化肥与农药需求。该技术为农业绿色生产提供了一种低成本、高效益的解决方案,兼具环境友好性与经济可行性。 展开更多
关键词 雾化栽培 低温等离子体 固氮 生菜
在线阅读 下载PDF
Fusion of the deep networks for rapid detection of branch-infected aeroponically cultivated mulberries using multimodal traits
2
作者 osama elsherbiny Jianmin Gao +2 位作者 Yinan Guo Mazhar H.Tunio Abdallah H.Mosha 《International Journal of Agricultural and Biological Engineering》 2025年第2期75-88,共14页
Automatic diagnosis of diseases in aeroponically cultivated branches is crucial for enhancing the efficacy of root development and overall plant survivability during propagation.Deep learning and visible imaging offer... Automatic diagnosis of diseases in aeroponically cultivated branches is crucial for enhancing the efficacy of root development and overall plant survivability during propagation.Deep learning and visible imaging offer potential for precise health assessment,despite challenges in feature selection and model design,impacting diagnostic accuracy and effectiveness.The primary objective of this study is to explore a hybrid deep network that integrates multimodal data,such as texture and color attributes,as well as image color modes,to accurately detect the presence of mildew on mulberry branches.The proposed framework incorporates a Convolutional Neural Network(CNN)and Gated Recurrent Units(GRU).Various color modes were utilized,including grayscale,RGB(Red-Green-Blue),HSV(Hue-Saturation-Value),and CMYK(Cyan-Magenta-Yellow-Black).The traits based on RGB consist of nineteen vegetation color indices(VIs)and six texture variables obtained from the gray-level co-occurrence matrix(GLCM).The outcomes demonstrated that the CNNCMYK-GRUf network effectively integrates CMYK image data and color-texture features for tracking mulberry branch health during aeroponic propagation.It achieved a validation accuracy(Ac)of 99.50%,with classification precision(Pr),recall(Re),and F-measure(Fm)at the same level.Additionally,it obtained an intersection over union(IoU)of 98.90%and a loss value of 0.034.This network exhibited superior performance compared to the model that relied solely on individual image attributes,surpassing other deep networks such as Vision Transformers(Ac=94.80%),Swin Transformers(Ac=89.80%),and Multi-Layer Perceptrons(Ac=88.30%).Thus,the proposed methodology is capable of precisely assessing the health of mulberry shoots,enabling the swift deployment of intelligent aeroponic systems.Furthermore,adapting the developed model for mobile platforms could enhance its accessibility and promote sustainable,efficient agricultural practices. 展开更多
关键词 mulberry twigs health digital imagery VIs-GLCM top features selection CNN-GRU aeroponic system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部