期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
New Nanocomposite Materials by Incorporation of Nanocrystalline TiO_2 Particles into Polyaniline Conductive Films 被引量:2
1
作者 F.J.Feliciano o.c.monteiro 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第5期449-454,共6页
This work is focused on the combination of two building-blocks, nanocrystalline TiO2 particles and polyaniline conductive films (PAni). The preparation of new nanostructured composite materials, displaying electron-... This work is focused on the combination of two building-blocks, nanocrystalline TiO2 particles and polyaniline conductive films (PAni). The preparation of new nanostructured composite materials, displaying electron- and proton-conductive properties, to be used for the fabrication of new and superior energy storage devices was envisaged. The semiconducting TiO2 nanoparticles were obtained by means of a hydrothermal route. The PAni films were prepared on glassy carbon electrodes by electrochemical polymerization, under potential dynamic conditions. After characterization by X-ray diffraction, transmission electron microscopy or scanning electron microscopy and electrochemical techniques, the nanocrystalline particles were immobilized in the polymer matrix. The incorporation of the TiO2 was achieved using two distinct approaches: during the polymer growth or by deposition over previously prepared PAni films. The results demonstrate that the PAni morphology depends on the experimental conditions used during the polymer growth. After TiO2 immobilization, the best electrochemical response was obtained for the nanocomposite structure produced through the TiO2 incorporation after the PAni film synthesis. The modified electrodes were structurally and morphologically characterized and their electro-catalytic activity towards the hydrogen evolution reaction was analyzed. A new electrochemical performance related with the oxidation of molecular hydrogen entrapped in the PAni-TiO2 matrix was observed for the modified electrode after TiO2 incorporation. This behavior can be directly associated with the synergetic combination of the TiO2 and PAni, and is dependent on the amount of the semiconductor. 展开更多
关键词 PolyaniHne (PAni) Nanosized TiO2 NANOCOMPOSITES Hydrogen trapping
原文传递
Titanate Nanorods Modified with Nanocrystalline ZnS Particles and Their Photocatalytic Activity on Pollutant Removal
2
作者 G.Naudin T.Entradas +1 位作者 B.Barrocas o.c.monteiro 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第11期1122-1128,共7页
Aiming to produce materials with enhanced photocatalytic properties, the synthesis of new crystalline nanocomposites by combining titanate nanorods(TNR) with ZnS nanocrystallites is described in this work.The TNR mo... Aiming to produce materials with enhanced photocatalytic properties, the synthesis of new crystalline nanocomposites by combining titanate nanorods(TNR) with ZnS nanocrystallites is described in this work.The TNR modification was accomplished by an in situ nucleation and growth process of ZnS nanoparticles.Zinc diethyldithiocarbamate was used as the metal chalcogenide precursor. The prepared materials were structural, morphological and optical characterized by X-ray diffraction, transmission electron microscopy and high resolution transmission electron microscopy, energy dispersive spectroscopy and powder diffuse reflectance spectra. Crystalline Zn S nanoparticles were obtained as a homogeneous and continuous layer, covering completely the TNR surface. The application of these new nanocomposite materials on photocatalytic degradation of pollutants was investigated. First, the evaluation of hydroxyl radical formation, using the terephthalic acid as probe, was studied. Afterwards, the adsorption and photodegradation of safranine-T, used here as a model pollutant molecule, was investigated. The obtained data indicate that the prepared nanocomposites have potential to be used as photocatalysts for organic pollutant removal.The best removal results(97% removal) were obtained using the 0.01 Zn S/HTNR sample as catalyst(0.2 g/L; 10 ppm safranin-T solution) with a combination of a low dye adsorption(20%) and a high dye photocatalytic degradation(77%). 展开更多
关键词 Nanocomposite materials Surface modification PHOTOCATALYSIS Adsorption ability Optical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部