Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),t...Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),to enhance structural reasoning,knowledge retrieval,and memory management.The expansion of their application scope imposes higher requirements on the robustness of GNNs.However,as GNNs are applied to more dynamic and heterogeneous environments,they become increasingly vulnerable to real-world perturbations.In particular,graph data frequently encounters joint adversarial perturbations that simultaneously affect both structures and features,which are significantly more challenging than isolated attacks.These disruptions,caused by incomplete data,malicious attacks,or inherent noise,pose substantial threats to the stable and reliable performance of traditional GNN models.To address this issue,this study proposes the Dual-Shield Graph Neural Network(DSGNN),a defense model that simultaneously mitigates structural and feature perturbations.DSGNN utilizes two parallel GNN channels to independently process structural noise and feature noise,and introduces an adaptive fusion mechanism that integrates information from both pathways to generate robust node representations.Theoretical analysis demonstrates that DSGNN achieves a tighter robustness boundary under joint perturbations compared to conventional single-channel methods.Experimental evaluations across Cora,CiteSeer,and Industry datasets show that DSGNN achieves the highest average classification accuracy under various adversarial settings,reaching 81.24%,71.94%,and 81.66%,respectively,outperforming GNNGuard,GCN-Jaccard,GCN-SVD,RGCN,and NoisyGNN.These results underscore the importance of multi-view perturbation decoupling in constructing resilient GNN models for real-world applications.展开更多
Background Video anomaly detection has always been a hot topic and has attracted increasing attention.Many of the existing methods for video anomaly detection depend on processing the entire video rather than consider...Background Video anomaly detection has always been a hot topic and has attracted increasing attention.Many of the existing methods for video anomaly detection depend on processing the entire video rather than considering only the significant context. Method This paper proposes a novel video anomaly detection method called COVAD that mainly focuses on the region of interest in the video instead of the entire video. Our proposed COVAD method is based on an autoencoded convolutional neural network and a coordinated attention mechanism,which can effectively capture meaningful objects in the video and dependencies among different objects. Relying on the existing memory-guided video frame prediction network, our algorithm can significantly predict the future motion and appearance of objects in a video more effectively. Result The proposed algorithm obtained better experimental results on multiple datasets and outperformed the baseline models considered in our analysis. Simultaneously, we provide an improved visual test that can provide pixel-level anomaly explanations.展开更多
基金funded by the Key Research and Development Program of Zhejiang Province No.2023C01141the Science and Technology Innovation Community Project of the Yangtze River Delta No.23002410100suported by the Open Research Fund of the State Key Laboratory of Blockchain and Data Security,Zhejiang University.
文摘Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),to enhance structural reasoning,knowledge retrieval,and memory management.The expansion of their application scope imposes higher requirements on the robustness of GNNs.However,as GNNs are applied to more dynamic and heterogeneous environments,they become increasingly vulnerable to real-world perturbations.In particular,graph data frequently encounters joint adversarial perturbations that simultaneously affect both structures and features,which are significantly more challenging than isolated attacks.These disruptions,caused by incomplete data,malicious attacks,or inherent noise,pose substantial threats to the stable and reliable performance of traditional GNN models.To address this issue,this study proposes the Dual-Shield Graph Neural Network(DSGNN),a defense model that simultaneously mitigates structural and feature perturbations.DSGNN utilizes two parallel GNN channels to independently process structural noise and feature noise,and introduces an adaptive fusion mechanism that integrates information from both pathways to generate robust node representations.Theoretical analysis demonstrates that DSGNN achieves a tighter robustness boundary under joint perturbations compared to conventional single-channel methods.Experimental evaluations across Cora,CiteSeer,and Industry datasets show that DSGNN achieves the highest average classification accuracy under various adversarial settings,reaching 81.24%,71.94%,and 81.66%,respectively,outperforming GNNGuard,GCN-Jaccard,GCN-SVD,RGCN,and NoisyGNN.These results underscore the importance of multi-view perturbation decoupling in constructing resilient GNN models for real-world applications.
文摘Background Video anomaly detection has always been a hot topic and has attracted increasing attention.Many of the existing methods for video anomaly detection depend on processing the entire video rather than considering only the significant context. Method This paper proposes a novel video anomaly detection method called COVAD that mainly focuses on the region of interest in the video instead of the entire video. Our proposed COVAD method is based on an autoencoded convolutional neural network and a coordinated attention mechanism,which can effectively capture meaningful objects in the video and dependencies among different objects. Relying on the existing memory-guided video frame prediction network, our algorithm can significantly predict the future motion and appearance of objects in a video more effectively. Result The proposed algorithm obtained better experimental results on multiple datasets and outperformed the baseline models considered in our analysis. Simultaneously, we provide an improved visual test that can provide pixel-level anomaly explanations.