期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DSGNN:Dual-Shield Defense for Robust Graph Neural Networks
1
作者 Xiaohan Chen Yuanfang Chen +2 位作者 Gyu Myoung Lee noel crespi Pierluigi Siano 《Computers, Materials & Continua》 2025年第10期1733-1750,共18页
Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),t... Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),to enhance structural reasoning,knowledge retrieval,and memory management.The expansion of their application scope imposes higher requirements on the robustness of GNNs.However,as GNNs are applied to more dynamic and heterogeneous environments,they become increasingly vulnerable to real-world perturbations.In particular,graph data frequently encounters joint adversarial perturbations that simultaneously affect both structures and features,which are significantly more challenging than isolated attacks.These disruptions,caused by incomplete data,malicious attacks,or inherent noise,pose substantial threats to the stable and reliable performance of traditional GNN models.To address this issue,this study proposes the Dual-Shield Graph Neural Network(DSGNN),a defense model that simultaneously mitigates structural and feature perturbations.DSGNN utilizes two parallel GNN channels to independently process structural noise and feature noise,and introduces an adaptive fusion mechanism that integrates information from both pathways to generate robust node representations.Theoretical analysis demonstrates that DSGNN achieves a tighter robustness boundary under joint perturbations compared to conventional single-channel methods.Experimental evaluations across Cora,CiteSeer,and Industry datasets show that DSGNN achieves the highest average classification accuracy under various adversarial settings,reaching 81.24%,71.94%,and 81.66%,respectively,outperforming GNNGuard,GCN-Jaccard,GCN-SVD,RGCN,and NoisyGNN.These results underscore the importance of multi-view perturbation decoupling in constructing resilient GNN models for real-world applications. 展开更多
关键词 Graph neural networks adversarial attacks dual-shield defense certified robustness node classification
在线阅读 下载PDF
COVAD: Content-oriented video anomaly detection using a self attention-based deep learning model 被引量:1
2
作者 Wenhao SHAO Praboda RAJAPAKSHA +3 位作者 Yanyan WEI Dun LI noel crespi Zhigang LUO 《Virtual Reality & Intelligent Hardware》 2023年第1期24-41,共18页
Background Video anomaly detection has always been a hot topic and has attracted increasing attention.Many of the existing methods for video anomaly detection depend on processing the entire video rather than consider... Background Video anomaly detection has always been a hot topic and has attracted increasing attention.Many of the existing methods for video anomaly detection depend on processing the entire video rather than considering only the significant context. Method This paper proposes a novel video anomaly detection method called COVAD that mainly focuses on the region of interest in the video instead of the entire video. Our proposed COVAD method is based on an autoencoded convolutional neural network and a coordinated attention mechanism,which can effectively capture meaningful objects in the video and dependencies among different objects. Relying on the existing memory-guided video frame prediction network, our algorithm can significantly predict the future motion and appearance of objects in a video more effectively. Result The proposed algorithm obtained better experimental results on multiple datasets and outperformed the baseline models considered in our analysis. Simultaneously, we provide an improved visual test that can provide pixel-level anomaly explanations. 展开更多
关键词 Video surveillance Video anomaly detection Machine learning Deep learning Neural network Coordinate attention
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部