期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Efficiency of soil and water conservation practices in different agro-ecological environments in the Upper Blue Nile Basin of Ethiopia 被引量:2
1
作者 Dagnenet SULTAN Atsushi TSUNEKAWA +7 位作者 nigussie haregeweyn Enyew ADGO Mitsuru TSUBO Derege T MESHESHA Tsugiyuki MASUNAGA Dagnachew AKLOG Ayele A FENTA Kindiye EBABU 《Journal of Arid Land》 SCIE CSCD 2018年第2期249-263,共15页
In developing countries such as Ethiopia, research to develop and promote soil and water conservation practices rarely addressed regional diversity. Using a water-balance approach in this study, we used runoff plots f... In developing countries such as Ethiopia, research to develop and promote soil and water conservation practices rarely addressed regional diversity. Using a water-balance approach in this study, we used runoff plots from three sites, each representing a different agro-ecological environment, e.g., high, mid and low in both elevation and rainfall, in the Upper Blue Nile Basin of Ethiopia to examine the runoff response and runoff conservation efficiency of a range of different soil and water conservation measures and their impacts on soil moisture. The plots at each site represented common land use types(cultivated vs. non-agricultural land use types) and slopes(gentle and steep). Seasonal runoff from control plots in the highlands ranged 214–560 versus 253–475 mm at midlands and 119–200 mm at lowlands. The three soil and water conservation techniques applied in cultivated land increased runoff conservation efficiency by 32% to 51%, depending on the site. At the moist subtropical site in a highland region, soil and water conservation increased soil moisture enough to potentially cause waterlogging, which was absent at the lowrainfall sites. Soil bunds combined with Vetiveria zizanioides grass in cultivated land and short trenches in grassland conserved the most runoff(51% and 55%, respectively). Runoff responses showed high spatial variation within and between land use types, causing high variation in soil and water conservation efficiency. Our results highlight the need to understand the role of the agro-ecological environment in the success of soil and water conservation measures to control runoff and hydrological dynamics. This understanding will support policy development to promote the adoption of suitable techniques that can be tested at other locations with similar soil, climatic, and topographic conditions. 展开更多
关键词 AGRO-ECOLOGY drought-prone runoff coefficient runoff conservation efficiency Ethiopia
在线阅读 下载PDF
Effect of Polyacrylamide integrated with other soil amendments on runoff and soil loss:Case study from northwest Ethiopia 被引量:4
2
作者 Birhanu Kebede Atsushi Tsunekawa +8 位作者 nigussie haregeweyn Mitsuru Tsubo Temesgen Mulualem Amrakh I.Mamedov Derege Tsegaye Meshesha Enyew Adgo Ayele Almaw Fenta Kindiye Ebabu Tsugiyuki Masunaga 《International Soil and Water Conservation Research》 SCIE CSCD 2022年第3期487-496,共10页
Anionic polyacrylamide(PAM)has the potential to reduce soil erosion through soil conditioning.However,a comprehensive study about its effectiveness especially when applied combined with other amendments have rarely be... Anionic polyacrylamide(PAM)has the potential to reduce soil erosion through soil conditioning.However,a comprehensive study about its effectiveness especially when applied combined with other amendments have rarely been conducted in the tropical highland climatic conditions,such as in Ethiopia.The study assessed the effectiveness of PAM(P=40 kg ha^(-1))alone or integrated with other soil amendments such as gypsum(G=5 t ha^(-1)),lime(L=4 t ha^(-1))and biochar(B=8 t ha^(-1))on runoff and soil loss at Aba Gerima watershed in the Upper Blue Nile basin,northwest of Ethiopia,where there is high erosion-caused soil degradation.A total of 79 daily runoff and sediment data were collected from eight runoff plots(1.3m×4m)with three replications planted with teff(Eragrostis tef)crop for two years(2018&2019)rainy seasons.Associated changes in soil physicochemical properties and crop growth parameters were investigated.Treatments reduced seasonal runoff by 12–39%and soil loss by 13–53%.The highest reduction in runoff was observed from P+B and PAM treatments while the highest reduction in soil loss was observed from that of P+L and PAM treatments.Integrating PAM with other amendments improved soil structural stability,moisture content,soil pH(P+L)and organic matter(P+B),leading to favorable environment for crop growth(biomass yield)and reduced runoff and soil erosion.Unlike PAM,biochar and lime amendments may need more time after application to be more effective.Hence continuing the field experiment and studying physico-chemical mechanisms for extended period will better elucidate their single or combined effectiveness over time. 展开更多
关键词 DRYLAND Soil amendments POLYACRYLAMIDE Soil erosion Soil properties
原文传递
Changes in ecosystem service values strongly influenced by human activities in contrasting agro-ecological environments 被引量:1
3
作者 Mulatu Liyew Berihun Atsushi Tsunekawa +2 位作者 nigussie haregeweyn Mitsuru Tsubo Ayele Almaw Fenta 《Ecological Processes》 SCIE EI 2021年第1期691-708,共18页
Background:Evaluating the impacts of land-use/land-cover(LULC)changes on ecosystem service values(ESVs)is essential for sustainable use and management of ecosystems.In this study,we evaluated the impact of human activ... Background:Evaluating the impacts of land-use/land-cover(LULC)changes on ecosystem service values(ESVs)is essential for sustainable use and management of ecosystems.In this study,we evaluated the impact of human activity driven LULC changes on ESVs over the period 1982–2016/17 in contrasting agro-ecological environments:Guder(highland),Aba Gerima(midland),and Debatie(lowland)watersheds of the Upper Blue Nile basin,Ethiopia.Results:During the study period,the continuous expansion of cultivated land at the expense of natural vegetation(bushland,forest,and grazing land)severely reduced the total ESV by about US$58 thousand(35%)in Aba Gerima and US$31 thousand(29%)in Debatie watersheds.In contrast,the unprecedented expansion of plantations,mainly through the planting of Acacia decurrens,led,from 2006,to a ESV rebound by about US$71 thousand(54%)in Guder watershed,after it had decreased by about US$61 thousand(32%)between 1982 and 2006.The reduction in natural forest area was the major contributor to the loss of total ESV in the study watersheds,ranging from US$31 thousand(63%)in Debatie to US$96.9 thousand(70%)in Guder between 1982 and 2016/17.On an areaspecific basis,LULC changes reduced the average ESV from US$560 ha^(−1) year^(−1)(1982)in Guder to US$306 ha^(−1) year^(−1)(2017)in Debatie watersheds.Specific ESVs such as provisioning(mainly as food production)and regulating services(mainly as erosion control and climate regulation)accounted for most of the total ESVs estimated for the study watersheds.Conclusions:In most cases,the total and specific ESVs of the watersheds were negatively associated with the population growth,which in turn was positively associated with the expansion of cultivated land over the study period.In Guder,however,ESVs were positively associated with population growth,especially after 2012.This is mainly due to the expansion of Acacia decurrens plantations.Our results suggest,therefore,that future policy measures and directions should focus on improving vegetation cover through planting multipurpose trees such as Acacia decurrens to prevent future loss of ESV in the midland and lowland regions of the Upper Blue Nile basin and beyond.However,caution must be taken during plantation of invasive species as they may have undesirable consequences. 展开更多
关键词 Drought prone Agro-ecologies Land use/land cover Acacia decurrens Plantations Ecosystem services Farming practices Upper Blue Nile basin
原文传递
Towards a better understanding of pathways of multiple co-occurring erosion processes on global cropland 被引量:1
4
作者 Pasquale Borrelli Christine Alewell +14 位作者 Jae E.Yang Nejc Bezak Yixian Chen Ayele Almaw Fenta Arthur Nicolaus Fendrich Surya Gupta Francis Matthews Sirio Modugno nigussie haregeweyn David A.Robinson Florence Tan Matthias Vanmaercke Gert Verstraeten Diana C.S.Vieira Panos Panagos 《International Soil and Water Conservation Research》 SCIE CSCD 2023年第4期713-725,共13页
Soil erosion is a complex process involving multiple natural and anthropic agents,causing the deterio-ration of multiple components comprising soil health.Here,we provide an estimate of the spatial pat-terns of cropla... Soil erosion is a complex process involving multiple natural and anthropic agents,causing the deterio-ration of multiple components comprising soil health.Here,we provide an estimate of the spatial pat-terns of cropland susceptibility to erosion by sheet and rill,gully,wind,tillage,and root crops harvesting and report the co-occurrence of these processes using a multi-model approach.In addition,to give a global overview of potential future changes,we identify the locations where these multiple concurrent soil erosion processes may be expected to intersect with projected dry/wet climate changes by 2070.Of a modelled 1.48 billion hectares(B ha)of global cropland,our results indicate that 0.56 B ha(-36%of the total area)are highly susceptible(classes 4 and 5)to a single erosion process,0.27 B ha(-18%of the total area)to two processes and 0.02 B ha(1.4%of the total area)to three or more processes.An estimated 0.82 B ha of croplands are susceptible to possible increases in water(0.68 B ha)and wind(0.14 B ha)erosion.We contend that the presented set of estimates represents a basis for enhancing our founda-tional knowledge on the geography of soil erosion at the global scale.The generated insight on multiple erosion processes can be a useful starting point for decision-makers working with ex-post and ex-ante policy evaluation of the UN Sustainable Development Goal 15(Life on Land)activities.Scientifically,this work provides the hitherto most comprehensive assessment of soil erosion risks at the global scale,based on state-of-the-art models. 展开更多
关键词 Modelling Multi-model approach Water Wind GULLY TILLAGE Crop harvesting
原文传递
Global analysis of cover management and support practice factors that control soil erosion and conservation 被引量:1
5
作者 Kindiye Ebabu Atsushi Tsunekawa +11 位作者 nigussie haregeweyn Mitsuru Tsubo Enyew Adgo Ayele Almaw Fenta Derege Tsegaye Meshesha Mulatu Liyew Berihun Dagnenet Sultan Matthias Vanmaercke Panos Panagos Pasquale Borrelli Eddy J.Langendoen Jean Poesen 《International Soil and Water Conservation Research》 SCIE CSCD 2022年第2期161-176,共16页
Cover management and support practices largely control the magnitude and variability of soil erosion.Although soil erosion models account for their importance(particularly by C-and P-factors in the Revised Universal S... Cover management and support practices largely control the magnitude and variability of soil erosion.Although soil erosion models account for their importance(particularly by C-and P-factors in the Revised Universal Soil Loss Equation),obtaining spatially explicit quantitative field data on these factors remains challenging.Hence,also our insight into the effects of soil conservation measures at larger spatial scales remains limited.We analyzed the variation in C-and P-factors caused by human activities and climatic variables by reviewing 255 published articles reporting measured or calculated C-and P-factor values.We found a wide variation in both factor values across climatic zones,land use or cover types,and support practices.The average C-factor values decreased from arid(0.26)to humid(0.15)climates,whereas the average P-factor values increased(from 0.33 to 0.47,respectively).Thus,support practices reduce soil loss more effectively in drylands and drought-prone areas.The global average C-factor varies by one order of magnitude from cropland(0.34)to forest(0.03).Among the major crops,the average C-factor was highest for maize(0.42)followed by potato(0.40),among the major orchard crops,it was highest for olive(0.31),followed by vineyards(0.26).The P-factor ranged from 0.62 for contouring in cropland plots to 0.19 for trenches in uncultivated land.The C-factor results indicate that cultivated lands requiring intensive site preparation and weeding are most vulnerable to soil loss by sheet and rill erosion.The low P-factor for trenches,reduced tillage cultivation,and terraces suggests that significantly decreased soil loss is possible by implementing more efficient management practices.These results improve our understanding of the variation in C-and P-factors and support large-scale integrated catchment management interventions by applying soil erosion models where it is difficult to empirically determine the impact of particular land use or cover types and support practices:the datasets compiled in this study can support further modeling and land management attempts in different countries and geographic regions. 展开更多
关键词 Climate regimes Drought-prone Erosion modeling Land use Soil conservation
原文传递
vip editorial-soil erosion assessment, tools and data: A special issue from the Global Symposium on soil Erosion 2019 被引量:1
6
作者 Clara Lefèvre Richard M.Cruse +2 位作者 Lucia Helena Cunha dos Anjos Costanza Calzolari nigussie haregeweyn 《International Soil and Water Conservation Research》 SCIE CSCD 2020年第4期333-336,共4页
This special issue on soil erosion assessment,tools and data creation,consolidation and harmonization presents advances in soil erosion research with a focus on new tools that are being used to assess soil erosion rat... This special issue on soil erosion assessment,tools and data creation,consolidation and harmonization presents advances in soil erosion research with a focus on new tools that are being used to assess soil erosion rates.This publication includes eleven selected contributions presented at the Global Symposium on Soil Erosion(GSER,15-17 May 2019,Rome,Italy)dealing with erosion indicators'improvement,the use of remote sensing,nuclear techniques and geochemical fingerprinting as promising methods to assess soil losses,management practices that reduce soil erosion in vineyards and olive groves plantations and their modelling,and national and regional erosion assessments. 展开更多
关键词 soil EROSION dealing
原文传递
Tillage and crop management impacts on soil loss and crop yields in northwestern Ethiopia
7
作者 Fekremariam Asargew Mihretie Atsushi Tsunekawa +9 位作者 nigussie haregeweyn Enyew Adgo Mitsuru Tsubo Kindiye Ebabu Tsugiyuki Masunaga Birhanu Kebede Derege Tsegaye Meshesha Wataru Tsuji Muluken Bayable Mulatu Liyew Berihun 《International Soil and Water Conservation Research》 SCIE CSCD 2022年第1期75-85,共11页
Lack of appropriate agronomic practices is one of the major causes for soil erosion and low yields in teff(Eragrostis tef[Zucc.])production in Ethiopia.A 3-yr study was conducted at the Aba Gerima watershed in northwe... Lack of appropriate agronomic practices is one of the major causes for soil erosion and low yields in teff(Eragrostis tef[Zucc.])production in Ethiopia.A 3-yr study was conducted at the Aba Gerima watershed in northwestern Ethiopia,to investigate the effects of two tillage practices(reduced tillage[RT]and conventional tillage[CT]),two planting methods(row planting[RP]and broadcast planting[BP]),and two compaction options(with[+T]and without[-T]trampling)on soil loss and teff yields in a split-split plot arrangement.Sediment concentration ranged from 0.01 to 5.37 g L^(-1)(mean,0.25 g L^(-1))in our study.Accordingly,the estimated total(August-October)soil loss ranged from 0.2 to 0.5 t ha^(-1)(mean,0.3 t ha^(-1)).The sediment concentration and total soil loss were significantly influenced(P<0.05)by tillage,planting methods,and trampling only in the third monitoring year.RT reduced soil loss by 19% relative to that of CT,whereas RP resulted in a 13%reduction in soil loss over BP.The-T plots showed a 15%reduction in soil loss as compared to+T plots.Results revealed significant increase in soil total carbon and nitrogen in RT and-T.Less soil loss and greater teff grain yield were obtained in plots with improved agronomic practices(RT and RP)compared to conventional ones(CT and BP).Based on our findings we conclude that the use of RT,RP,and-T practices can effectively minimize soil loss without any crop yield penalty. 展开更多
关键词 Drought-resistance Grain yield Reduced tillage Row planting Soil erosion Teff
原文传递
Agroecology-based land use/land cover change detection,prediction and its implications for land degradation:A case study in the Upper Blue Nile Basin
8
作者 Taye Minichil Meshesha Atsushi Tsunekawa +6 位作者 nigussie haregeweyn Mitsuru Tsubo Ayele Almaw Fenta Mulatu Liyew Berihun Arega Mulu Tadesual Asamin Setargie Samuel Berihun Kassa 《International Soil and Water Conservation Research》 CSCD 2024年第4期786-797,共12页
This study examined land use/land cover(LULC)changes in Chemoga watershed of the Upper Blue Nile Basin,comprising four distinct agroecological regions:Wet Wurch,Moist Dega,Moist Weyna Dega,and Moist Kolla.We used mult... This study examined land use/land cover(LULC)changes in Chemoga watershed of the Upper Blue Nile Basin,comprising four distinct agroecological regions:Wet Wurch,Moist Dega,Moist Weyna Dega,and Moist Kolla.We used multi-temporal Landsat images from 1985 to 2020,a hybrid classification method and the Cellular Automata-Markov model to analyze historical and predict future(2020-2060)LULC changes under business-as-usual(BAU)and land conservation(LC)scenarios.Magnitudes and patterns of spaciotemporal LULC changes were analyzed using intensity analysis.Cropland expanded across all agroecologies from 1985 to 2020,with Moist Kolla experiencing the highest increase at the expense of woodland,due the introduction of commercial farming to this hotter,less populated and inaccessible area.Moist Dega exhibited the highest allocation changes within cropland and forest,attributable to farmers’adoption of rotational land use to rehabilitate extensively degraded cultivated lands.Under the BAU scenario,projections suggest further cropland expansion at expense of woodland in Moist Kolla and built-up areas at the expense of cropland and grassland in Moist Dega.Under the LC scenario,forest cover is expected to increase at the expense of cropland across all agroecologies.The historical and projected BAU LULC change scenario substantially increased soil erosion and reduced ecosystem services.These effects can be minimized if LC scenario is properly implemented.The agroecology-based LULC intensity analysis reveals local drivers of change and associated impacts,providing vital insights for targeted land use planning in this study watershed and other watersheds facing similar challenges. 展开更多
关键词 Drought-prone Remote sensing Land use planning LULC prediction Intensity analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部