BACKGROUND Exosome-based therapies represent a promising approach for hair regeneration.Unlike conventional treatments such as minoxidil and finasteride,exosomes deliver bioactive cargo that can stimulate dermal papil...BACKGROUND Exosome-based therapies represent a promising approach for hair regeneration.Unlike conventional treatments such as minoxidil and finasteride,exosomes deliver bioactive cargo that can stimulate dermal papilla cells,enhance angiogenesis,and modulate inflammatory pathways.However,variability in exosome sources,isolation techniques,and dosing protocols limits their clinical translation.AIM To synthesize findings from in vitro,preclinical and clinical studies,and to evaluate the efficacy,mechanisms,and challenges associated with exosome-based hair restoration therapies.METHODS A literature search was conducted using multiple databases(PubMed/Medline,Embase,Scopus,and Web of Science)employing terms for exosomes and hair regeneration for articles published in English to February 2025,following Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines.RESULTS A total of 27 studies(three in vitro,three pre-clinical,18 with both in vitro and preclinical component and three clinical)met the pre-defined search and inclusion criteria and were included in this review.CONCLUSION Exosome-based therapies hold immense promise for hair regeneration by leveraging their ability to modulate key signaling pathways and enhance hair follicle regeneration.While in vitro and preclinical studies demonstrate consistent efficacy across diverse exosome sources,methodological heterogeneity and a limited number of clinical studies warrant further clinical research to realize their full clinical potential for hair regeneration.展开更多
文摘BACKGROUND Exosome-based therapies represent a promising approach for hair regeneration.Unlike conventional treatments such as minoxidil and finasteride,exosomes deliver bioactive cargo that can stimulate dermal papilla cells,enhance angiogenesis,and modulate inflammatory pathways.However,variability in exosome sources,isolation techniques,and dosing protocols limits their clinical translation.AIM To synthesize findings from in vitro,preclinical and clinical studies,and to evaluate the efficacy,mechanisms,and challenges associated with exosome-based hair restoration therapies.METHODS A literature search was conducted using multiple databases(PubMed/Medline,Embase,Scopus,and Web of Science)employing terms for exosomes and hair regeneration for articles published in English to February 2025,following Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines.RESULTS A total of 27 studies(three in vitro,three pre-clinical,18 with both in vitro and preclinical component and three clinical)met the pre-defined search and inclusion criteria and were included in this review.CONCLUSION Exosome-based therapies hold immense promise for hair regeneration by leveraging their ability to modulate key signaling pathways and enhance hair follicle regeneration.While in vitro and preclinical studies demonstrate consistent efficacy across diverse exosome sources,methodological heterogeneity and a limited number of clinical studies warrant further clinical research to realize their full clinical potential for hair regeneration.