期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Novel Eccentric Intrusion Detection Model Based on Recurrent Neural Networks with Leveraging LSTM 被引量:1
1
作者 navaneetha krishnan muthunambu Senthil Prabakaran +3 位作者 Balasubramanian Prabhu Kavin Kishore Senthil Siruvangur Kavitha Chinnadurai Jehad Ali 《Computers, Materials & Continua》 SCIE EI 2024年第3期3089-3127,共39页
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet.Regrettably,this d... The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet.Regrettably,this development has expanded the potential targets that hackers might exploit.Without adequate safeguards,data transmitted on the internet is significantly more susceptible to unauthorized access,theft,or alteration.The identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious attacks.This research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks(RNN)integrated with Long Short-Term Memory(LSTM)units.The proposed model can identify various types of cyberattacks,including conventional and distinctive forms.Recurrent networks,a specific kind of feedforward neural networks,possess an intrinsic memory component.Recurrent Neural Networks(RNNs)incorporating Long Short-Term Memory(LSTM)mechanisms have demonstrated greater capabilities in retaining and utilizing data dependencies over extended periods.Metrics such as data types,training duration,accuracy,number of false positives,and number of false negatives are among the parameters employed to assess the effectiveness of these models in identifying both common and unusual cyberattacks.RNNs are utilised in conjunction with LSTM to support human analysts in identifying possible intrusion events,hence enhancing their decision-making capabilities.A potential solution to address the limitations of Shallow learning is the introduction of the Eccentric Intrusion Detection Model.This model utilises Recurrent Neural Networks,specifically exploiting LSTM techniques.The proposed model achieves detection accuracy(99.5%),generalisation(99%),and false-positive rate(0.72%),the parameters findings reveal that it is superior to state-of-the-art techniques. 展开更多
关键词 CYBERSECURITY intrusion detection machine learning leveraging long short-term memory(LLSTM) CICIDS2019 dataset innovative cyberattacks
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部