The Einstein Probe(EP)is an interdisciplinary mission of time-domain and X-ray astronomy.Equipped with a wide-field lobstereye X-ray focusing imager,EP will discover cosmic X-ray transients and monitor the X-ray varia...The Einstein Probe(EP)is an interdisciplinary mission of time-domain and X-ray astronomy.Equipped with a wide-field lobstereye X-ray focusing imager,EP will discover cosmic X-ray transients and monitor the X-ray variability of known sources in 0.5-4 keV,at a combination of detecting sensitivity and cadence that is not accessible to the previous and current wide-field monitoring missions.EP can perform quick characterisation of transients or outbursts with a Wolter-I X-ray telescope onboard.In this paper,the science objectives of the EP mission are presented.EP is expected to enlarge the sample of previously known or predicted but rare types of transients with a wide range of timescales.Among them,fast extragalactic transients will be surveyed systematically in soft X-rays,which includeγ-ray bursts and their variants,supernova shock breakouts,and the predicted X-ray transients associated with binary neutron star mergers.EP will detect X-ray tidal disruption events and outbursts from active galactic nuclei,possibly at an early phase of the flares for some.EP will monitor the variability and outbursts of X-rays from white dwarfs,neutron stars and black holes in our and neighbouring galaxies at flux levels fainter than those detectable by the current instruments,and is expected to discover new objects.A large sample of stellar X-ray flares will also be detected and characterised.In the era of multi-messenger astronomy,EP has the potential of detecting the possible X-ray counterparts of gravitational wave events,neutrino sources,and ultra-high energyγ-ray and cosmic ray sources.EP is expected to help advance the studies of extreme objects and phenomena revealed in the dynamic X-ray universe,and their underlying physical processes.Besides EP's strength in time-domain science,its follow-up telescope,with excellent performance,will also enable advances in many areas of X-ray astronomy.展开更多
In this white paper,we present the potential of the enhanced X-ray timing and polarimetry(eXTP)mission to constrain the equation of state of dense matter in neutron stars,exploring regimes not directly accessible to t...In this white paper,we present the potential of the enhanced X-ray timing and polarimetry(eXTP)mission to constrain the equation of state of dense matter in neutron stars,exploring regimes not directly accessible to terrestrial experiments.By observing a diverse population of neutron stars—including isolated objects,X-ray bursters,and accreting systems—eXTP’s unique combination of timing,spectroscopy,and polarimetry enables high-precision measurements of compactness,spin,surface temperature,polarimetric signals,and timing irregularity.These multifaceted observations,combined with advances in theoretical modeling,pave the way toward a comprehensive description of the properties and phases of dense matter from the crust to the core of neutron stars.Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences,the eXTP mission is planned to be launched in early 2030.展开更多
We report the discovery of a peculiar X-ray transient,EP240408a,by Einstein Probe(EP)and follow-up studies made with EP,Swift,NICER,GROND,ATCA and other ground-based multiwavelength telescopes.The new transient was fi...We report the discovery of a peculiar X-ray transient,EP240408a,by Einstein Probe(EP)and follow-up studies made with EP,Swift,NICER,GROND,ATCA and other ground-based multiwavelength telescopes.The new transient was first detected with Wide-field X-ray Telescope(WXT)on board EP on April 8th,2024,manifested in an intense yet brief X-ray flare lasting for 12 s.The flare reached a peak flux of 3:9×10^(−9) erg cm^(−2) s^(−1) in 0.5-4 keV,∼300 times brighter than the underlying X-ray emission detected throughout the observation.Rapid and more precise follow-up observations by EP/FXT,Swift and NICER confirmed the finding of this new transient.Its X-ray spectrum is non-thermal in 0.5-10 keV,with a power-law photon index varying within 1.8-2.5.The X-ray light curve shows a plateau lasting for∼4 d,followed by a steep decay till becoming undetectable∼10 d after the initial detection.Based on its temporal property and constraints from previous EP observations,an unusual timescale in the range of 7-23 d is found for EP240408a,which is intermediate between the commonly found fast and long-term transients.No counterparts have been found in optical and near-infrared,with the earliest observation at 17 h after the initial X-ray detection,suggestive of intrinsically weak emission in these bands.We demonstrate that the remarkable properties of EP240408a are inconsistent with any of the transient types known so far,by comparison with,in particular,jetted tidal disruption events,gamma-ray bursts,X-ray binaries and fast blue optical transients.The nature of EP240408a thus remains an enigma.We suggest that EP240408a may represent a new type of transients with intermediate timescales of the order of∼10 d.The detection and follow-ups of more of such objects are essential for revealing their origin.展开更多
In this paper we present the science potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies of strongly magnetized objects. We will focus on the physics and astrophysics of strongly magnetize...In this paper we present the science potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies of strongly magnetized objects. We will focus on the physics and astrophysics of strongly magnetized objects, namely magnetars, accreting X-ray pulsars, and rotation powered pulsars. We also discuss the science potential of eXTP for QED studies. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020s.展开更多
基金supported by Strategic Priority Program on Space Science of Chinese Academy of Sciences,in collaboration with ESA,MPE and CNES(Grant Nos.XDA15310000,and XDA15052100)supported by the National Natural Science Foundation of China(Grant Nos.61234003,61434004,and 61504141)CAS Interdisciplinary Project(Grant No.KJZD-EW-L11-04)。
文摘The Einstein Probe(EP)is an interdisciplinary mission of time-domain and X-ray astronomy.Equipped with a wide-field lobstereye X-ray focusing imager,EP will discover cosmic X-ray transients and monitor the X-ray variability of known sources in 0.5-4 keV,at a combination of detecting sensitivity and cadence that is not accessible to the previous and current wide-field monitoring missions.EP can perform quick characterisation of transients or outbursts with a Wolter-I X-ray telescope onboard.In this paper,the science objectives of the EP mission are presented.EP is expected to enlarge the sample of previously known or predicted but rare types of transients with a wide range of timescales.Among them,fast extragalactic transients will be surveyed systematically in soft X-rays,which includeγ-ray bursts and their variants,supernova shock breakouts,and the predicted X-ray transients associated with binary neutron star mergers.EP will detect X-ray tidal disruption events and outbursts from active galactic nuclei,possibly at an early phase of the flares for some.EP will monitor the variability and outbursts of X-rays from white dwarfs,neutron stars and black holes in our and neighbouring galaxies at flux levels fainter than those detectable by the current instruments,and is expected to discover new objects.A large sample of stellar X-ray flares will also be detected and characterised.In the era of multi-messenger astronomy,EP has the potential of detecting the possible X-ray counterparts of gravitational wave events,neutrino sources,and ultra-high energyγ-ray and cosmic ray sources.EP is expected to help advance the studies of extreme objects and phenomena revealed in the dynamic X-ray universe,and their underlying physical processes.Besides EP's strength in time-domain science,its follow-up telescope,with excellent performance,will also enable advances in many areas of X-ray astronomy.
基金supported by China’s Space Origins Exploration Programsupported by the National Natural Science Foundation of China (Grant No.12273028)+36 种基金support from ERC Consolidator (Grant No.865768) AEONSsupport from NWO grant ENW-XL OCENW.XL21.XL21.038the support of the CNESsupported by the National Natural Science Foundation of China (Grant No.12333007)the International Partnership Program of Chinese Academy of Sciences (Grant No.113111KYSB20190020)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA15020100)supported by the China National Postdoctoral Program for Innovation Talents (Grant No.BX20240223)the China Postdoctoral Science Foundation Funded Project (Grant No.2024M761948)support from a Ramon y Cajal fellowship (Grant No.RYC2021-032718-I) financed by MCIN/AEI/10.13039/501100011033 and the European Union Next Generation EU/PRTRsupported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No.2023D01E20)the National SKA Program of China (Grant No.2020SKA0120300)supported by the National Natural Science Foundation of China (Grant Nos.12033001,and 12473039)supported by Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ24A030002)supported by the National Natural Science Foundation of China (Grant No.12003009)supported by the National SKA Program of China (Grant No.2020SKA0120200)the National Natural Science Foundation of China (Grant No.12041303)supported by the National Natural Science Foundation of China (Grant No.1227303)supported by the National SKA Program of China (Grant No.2020SKA0120300)the Beijing Natural Science Foundation (Grant No.1242018)the Max Planck Partner Group Program funded by the Max Planck Societysupported by JSPS KAKENHI (the Japan Society for the Promotion of Science,Grantsin-Aid for Scientific Research) (Grant Nos.23K19056,and 25K17403)supported by the National Natural Science Foundation of China (Grant No.12175109)support from FCT (Fundacao para a Ciência e a Tecnologia,I.P.,Portugal) (Grant Nos.UIDB/04564/2020,and 2022.06460.PTDC)supported from the program Unidad de Excelencia María de Maeztu CEX2020-001058-Mfrom the project PID2022-139427NB-I00 financed by the Spanish MCIN/AEI/10.13039/501100011033/FEDER,UE (FSE+)by the CRC-TR 211 “Strong-interaction matter under extreme conditions” -project Nr.315477589-TRR 211support from grant PID2021-124581OB-I0,PID2024-155316NB-I00,and 2021SGR00426supported by the National Natural Science Foundation of China (Grant No.12122513)supported in part by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant No.101020842)by the Deutsche Forschungsgemeinschaft (DFG,German Research Foundation)-Project-ID 279384907-SFB 1245support from the ERC Consolidator (Grant No.101002352) (LOVENEST)supported by the European Research Council (ERC) via the Consolidator Grant “MAGNESIA” (Grant No.817661)the Proof of Concept “Deep Space Pulse” (Grant No.101189496)the Catalan grant SGR2021-01269the Spanish grant ID2023-153099NA-I00the program Unidad de Excelencia Maria de Maeztu CEX2020-001058-Msupported by the Research Council of Finland (Grant No.354533).
文摘In this white paper,we present the potential of the enhanced X-ray timing and polarimetry(eXTP)mission to constrain the equation of state of dense matter in neutron stars,exploring regimes not directly accessible to terrestrial experiments.By observing a diverse population of neutron stars—including isolated objects,X-ray bursters,and accreting systems—eXTP’s unique combination of timing,spectroscopy,and polarimetry enables high-precision measurements of compactness,spin,surface temperature,polarimetric signals,and timing irregularity.These multifaceted observations,combined with advances in theoretical modeling,pave the way toward a comprehensive description of the properties and phases of dense matter from the crust to the core of neutron stars.Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences,the eXTP mission is planned to be launched in early 2030.
基金based on data obtained with Einstein Probe,a space mission supported by Strategic Priority Program on Space Science of Chinese Academy of Sciences,in collaboration with ESA,MPE and CNES(Grant No.XDA15310000)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0550200)+5 种基金the National Key R&D Program of China(Grant No.2022YFF0711500)the support by the National Natural Science Foundation of China(Grant Nos.12333004,12321003,12103065,12373040,12021003,12025303,12393814,and 12203071)the China Manned Space Project(Grant Nos.CMS-CSST-2021-A13,and CMS-CSST-2021-B11)the Youth Innovation Promotion Association of the Chinese Academy of Sciencessupported by a Ramón y Cajal fellowship(Grant No.RYC2021-030888-I)financial support from AGAUR,CSIC,MCIN and AEI 10.13039/501100011033(Grant Nos.PID2023-151307NB-I00,PIE 20215AT016,CEX2020-001058-M,and 2021-SGR-01270)。
文摘We report the discovery of a peculiar X-ray transient,EP240408a,by Einstein Probe(EP)and follow-up studies made with EP,Swift,NICER,GROND,ATCA and other ground-based multiwavelength telescopes.The new transient was first detected with Wide-field X-ray Telescope(WXT)on board EP on April 8th,2024,manifested in an intense yet brief X-ray flare lasting for 12 s.The flare reached a peak flux of 3:9×10^(−9) erg cm^(−2) s^(−1) in 0.5-4 keV,∼300 times brighter than the underlying X-ray emission detected throughout the observation.Rapid and more precise follow-up observations by EP/FXT,Swift and NICER confirmed the finding of this new transient.Its X-ray spectrum is non-thermal in 0.5-10 keV,with a power-law photon index varying within 1.8-2.5.The X-ray light curve shows a plateau lasting for∼4 d,followed by a steep decay till becoming undetectable∼10 d after the initial detection.Based on its temporal property and constraints from previous EP observations,an unusual timescale in the range of 7-23 d is found for EP240408a,which is intermediate between the commonly found fast and long-term transients.No counterparts have been found in optical and near-infrared,with the earliest observation at 17 h after the initial X-ray detection,suggestive of intrinsically weak emission in these bands.We demonstrate that the remarkable properties of EP240408a are inconsistent with any of the transient types known so far,by comparison with,in particular,jetted tidal disruption events,gamma-ray bursts,X-ray binaries and fast blue optical transients.The nature of EP240408a thus remains an enigma.We suggest that EP240408a may represent a new type of transients with intermediate timescales of the order of∼10 d.The detection and follow-ups of more of such objects are essential for revealing their origin.
基金support of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA15020100)supported by the Bundesministerium fuer Wirtschaft und Technologie through the Deutsches Zentrum fuer Luft-und Raumfahrte.V.(DLR)(Grant No.FKZ 50 OO 1701)Financial contribution from the agreement between the Italian Space Agency and the Istituto Nazionale di Astrofisica ASI-INAF n.2017-14H.O
文摘In this paper we present the science potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies of strongly magnetized objects. We will focus on the physics and astrophysics of strongly magnetized objects, namely magnetars, accreting X-ray pulsars, and rotation powered pulsars. We also discuss the science potential of eXTP for QED studies. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020s.