A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed ...A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed by high-temperature annealing for 4-22 h.The X-ray diffrac-tion method showed that the fluorite structure was realized for(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.75-0.817).The solid solution Tb_(3.12)Ti_(0.88)O_(6.44)(64mol%Tb_(2)O_(3)(x=0.78))with a fluorite structure exhibited a maximum hole conductivity of~22 S/cm at 600℃.To separate the ionic component of the conductivity in the electronic conductor Tb_(3.12)Ti_(0.88)O_(6.44),its high entropy analogue,(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44),was synthesized in which all rare-earth elements(REE)cations exhibited valency of+3.Consequently,the contribution of ionic(proton)conductivity(~7×10^(−6)S/cm at 600℃)was revealed with respect to the background of dominant hole conductivity.The proton conduct-ivity of high-entropy oxide(HEО)(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44)was confirmed by the detection of the isotope effect,where the mobility of the heavier O-D ions was lower than that of the O-H hydroxyls,resulting in lower conductivity in D_(2)O vapors when com-pared to H_(2)O.展开更多
基金the state assignment on the topic“Interdisciplinary approaches to the creation and study of micro-/nanostructured systems”(No.125012200595-8)Conductivity measurements of the samples were performed in accordance with the state task for FRC PCP and MC RAS(No.124013000692-4).
文摘A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed by high-temperature annealing for 4-22 h.The X-ray diffrac-tion method showed that the fluorite structure was realized for(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.75-0.817).The solid solution Tb_(3.12)Ti_(0.88)O_(6.44)(64mol%Tb_(2)O_(3)(x=0.78))with a fluorite structure exhibited a maximum hole conductivity of~22 S/cm at 600℃.To separate the ionic component of the conductivity in the electronic conductor Tb_(3.12)Ti_(0.88)O_(6.44),its high entropy analogue,(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44),was synthesized in which all rare-earth elements(REE)cations exhibited valency of+3.Consequently,the contribution of ionic(proton)conductivity(~7×10^(−6)S/cm at 600℃)was revealed with respect to the background of dominant hole conductivity.The proton conduct-ivity of high-entropy oxide(HEО)(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44)was confirmed by the detection of the isotope effect,where the mobility of the heavier O-D ions was lower than that of the O-H hydroxyls,resulting in lower conductivity in D_(2)O vapors when com-pared to H_(2)O.