Internet of Things(IoT)and blockchain receive significant interest owing to their applicability in different application areas such as healthcare,finance,transportation,etc.Medical image security and privacy become a ...Internet of Things(IoT)and blockchain receive significant interest owing to their applicability in different application areas such as healthcare,finance,transportation,etc.Medical image security and privacy become a critical part of the healthcare sector where digital images and related patient details are communicated over the public networks.This paper presents a new wind driven optimization algorithm based medical image encryption(WDOA-MIE)technique for blockchain enabled IoT environments.The WDOA-MIE model involves three major processes namely data collection,image encryption,optimal key generation,and data transmission.Initially,the medical images were captured from the patient using IoT devices.Then,the captured images are encrypted using signcryption technique.In addition,for improving the performance of the signcryption technique,the optimal key generation procedure was applied by WDOA algorithm.The goal of the WDOA-MIE algorithm is to derive a fitness function dependent upon peak signal to noise ratio(PSNR).Upon successful encryption of images,the IoT devices transmit to the closest server for storing it in the blockchain securely.The performance of the presented method was analyzed utilizing the benchmark medical image dataset.The security and the performance analysis determine that the presented technique offers better security with maximum PSNR of 60.7036 dB.展开更多
Rooftop units(RTUs)were commonly employed in small commercial buildings that represent that can frequently do not take the higher level maintenance that chillers receive.Fault detection and diagnosis(FDD)tools can be ...Rooftop units(RTUs)were commonly employed in small commercial buildings that represent that can frequently do not take the higher level maintenance that chillers receive.Fault detection and diagnosis(FDD)tools can be employed for RTU methods to ensure essential faults are addressed promptly.In this aspect,this article presents an Optimal Deep Belief Network based Fault Detection and Classification on Packaged Rooftop Units(ODBNFDC-PRTU)model.The ODBNFDC-PRTU technique considers fault diagnosis as amulti-class classification problem and is handled usingDL models.For fault diagnosis in RTUs,the ODBNFDC-PRTU model exploits the deep belief network(DBN)classification model,which identifies seven distinct types of faults.At the same time,the chicken swarm optimization(CSO)algorithm-based hyperparameter tuning technique is utilized for resolving the trial and error hyperparameter selection process,showing the novelty of the work.To illustrate the enhanced performance of the ODBNFDC-PRTU algorithm,a comprehensive set of simulations are applied.The comparison study described the improvement of the ODBNFDC-PRTU method over other recent FDD algorithms with maximum accuracy of 99.30%and TPR of 93.09%.展开更多
文摘Internet of Things(IoT)and blockchain receive significant interest owing to their applicability in different application areas such as healthcare,finance,transportation,etc.Medical image security and privacy become a critical part of the healthcare sector where digital images and related patient details are communicated over the public networks.This paper presents a new wind driven optimization algorithm based medical image encryption(WDOA-MIE)technique for blockchain enabled IoT environments.The WDOA-MIE model involves three major processes namely data collection,image encryption,optimal key generation,and data transmission.Initially,the medical images were captured from the patient using IoT devices.Then,the captured images are encrypted using signcryption technique.In addition,for improving the performance of the signcryption technique,the optimal key generation procedure was applied by WDOA algorithm.The goal of the WDOA-MIE algorithm is to derive a fitness function dependent upon peak signal to noise ratio(PSNR).Upon successful encryption of images,the IoT devices transmit to the closest server for storing it in the blockchain securely.The performance of the presented method was analyzed utilizing the benchmark medical image dataset.The security and the performance analysis determine that the presented technique offers better security with maximum PSNR of 60.7036 dB.
基金This work was supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2020-0-00107,Development of the technology to automate the recommendations for big data analytic models that define data characteristics and problems).
文摘Rooftop units(RTUs)were commonly employed in small commercial buildings that represent that can frequently do not take the higher level maintenance that chillers receive.Fault detection and diagnosis(FDD)tools can be employed for RTU methods to ensure essential faults are addressed promptly.In this aspect,this article presents an Optimal Deep Belief Network based Fault Detection and Classification on Packaged Rooftop Units(ODBNFDC-PRTU)model.The ODBNFDC-PRTU technique considers fault diagnosis as amulti-class classification problem and is handled usingDL models.For fault diagnosis in RTUs,the ODBNFDC-PRTU model exploits the deep belief network(DBN)classification model,which identifies seven distinct types of faults.At the same time,the chicken swarm optimization(CSO)algorithm-based hyperparameter tuning technique is utilized for resolving the trial and error hyperparameter selection process,showing the novelty of the work.To illustrate the enhanced performance of the ODBNFDC-PRTU algorithm,a comprehensive set of simulations are applied.The comparison study described the improvement of the ODBNFDC-PRTU method over other recent FDD algorithms with maximum accuracy of 99.30%and TPR of 93.09%.