In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigate...In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
In recent years, traditional rice landraces have gained increasing attention among consumers, scientists, and nutritionists because of their nutritional and therapeutic value. The diverse rice gene pool of the Indian ...In recent years, traditional rice landraces have gained increasing attention among consumers, scientists, and nutritionists because of their nutritional and therapeutic value. The diverse rice gene pool of the Indian subcontinent is bestowed with indigenous rice types augmented with nutrients and phytochemicals. Landraces high in resistant starch and dietary fiber contribute to gut health and help prevent gastrointestinal disorders, whereas those with high-quality protein contents, such as glutelin and lysine, all-trans retinoic acid, as well as iron and zinc contents(even in polished rice), play a vital role in the alleviation of malnutrition and hidden hunger. Metabolomic studies have revealed the presence of novel bioactive molecules, including tocols(e.g., gamma-tocotrienol and alpha-tocopherol), phytosterols(e.g., campestrol, beta-sitosterol, and stigmasterol), phenolic acids(e.g., 2-methoxy-4-vinylphenol, 4-vinylphenol, 3,5-di-tert-butylphenol, 2,4-di-tert-butylphenol, ionol, and 2,6-di-tert-butylphenol), flavonoids [e.g., flavonolignans tricin 4′-O-(threo-β-guaiacylglyceryl) ether and tricin 4′-O-(erythro-β-guaiacylglyceryl) ether], anthocyanins(e.g., delphinidin and cyanidin), carotenoids(e.g., 7,7′,8,8′-tetrahydrolycopene and 1-hydroxylycopene), diterpenoids(e.g., sugiol), vitamin D3(a secosteroid), and bioactive vitamin D(e.g., calcitriol). These bioactive phytochemicals endow Indian rice landraces, rich in antioxidants, with antiphlogistic, antineoplastic, cardiac risk preventive, antiviral, and antitubercular activities, confirming their use in traditional Indian medicine. Furthermore, Indian landraces with a low glycemic index may benefit the Asian Indian phenotype, which is characterized by clinical anomalies such as insulin resistance, dyslipidemia(reduced high-density lipoprotein levels), and high dietary glycemic load. Therefore, the conservation of India's traditional rice varieties is vital for both sustainable agriculture and improving global health.展开更多
基金Project supported by the NBHM Research Project (Grant Nos.2/48(7)/2012/NBHM(R.P.)/R and D II/12669)
文摘In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.
文摘In recent years, traditional rice landraces have gained increasing attention among consumers, scientists, and nutritionists because of their nutritional and therapeutic value. The diverse rice gene pool of the Indian subcontinent is bestowed with indigenous rice types augmented with nutrients and phytochemicals. Landraces high in resistant starch and dietary fiber contribute to gut health and help prevent gastrointestinal disorders, whereas those with high-quality protein contents, such as glutelin and lysine, all-trans retinoic acid, as well as iron and zinc contents(even in polished rice), play a vital role in the alleviation of malnutrition and hidden hunger. Metabolomic studies have revealed the presence of novel bioactive molecules, including tocols(e.g., gamma-tocotrienol and alpha-tocopherol), phytosterols(e.g., campestrol, beta-sitosterol, and stigmasterol), phenolic acids(e.g., 2-methoxy-4-vinylphenol, 4-vinylphenol, 3,5-di-tert-butylphenol, 2,4-di-tert-butylphenol, ionol, and 2,6-di-tert-butylphenol), flavonoids [e.g., flavonolignans tricin 4′-O-(threo-β-guaiacylglyceryl) ether and tricin 4′-O-(erythro-β-guaiacylglyceryl) ether], anthocyanins(e.g., delphinidin and cyanidin), carotenoids(e.g., 7,7′,8,8′-tetrahydrolycopene and 1-hydroxylycopene), diterpenoids(e.g., sugiol), vitamin D3(a secosteroid), and bioactive vitamin D(e.g., calcitriol). These bioactive phytochemicals endow Indian rice landraces, rich in antioxidants, with antiphlogistic, antineoplastic, cardiac risk preventive, antiviral, and antitubercular activities, confirming their use in traditional Indian medicine. Furthermore, Indian landraces with a low glycemic index may benefit the Asian Indian phenotype, which is characterized by clinical anomalies such as insulin resistance, dyslipidemia(reduced high-density lipoprotein levels), and high dietary glycemic load. Therefore, the conservation of India's traditional rice varieties is vital for both sustainable agriculture and improving global health.