Sorption characteristics of ion exchange resins 001 × 7, 005 × 8, D72 regarding rare earth metals (REM) during extraction from barren solution of uranium sorption in dynamic conditions were investigated. I...Sorption characteristics of ion exchange resins 001 × 7, 005 × 8, D72 regarding rare earth metals (REM) during extraction from barren solution of uranium sorption in dynamic conditions were investigated. It was identified that D72 resin capacity on analyzed REM was 2.46 mg.cm-3 after passing 220 BV (bed volume) of initial solution with 95 % recovery of element of REM with the lowest affinity. Researches on REM desorption in dynamic conditions from investigated ion exchange resins by solution of 1.7 mol.L-1 HNO3 and 8.0 mol.L-1 NHnNO3 with 0.2 mol.L-1 HNO3 passing were carded out. It was identified that using desorption solution based on ammonium nitrate allows to achieve acceptable recovery degree of REM from the resin. The possibility of organization of a circulating desorption solution system increases the perspectives of nitrate ammonium solution usage.展开更多
基金financially supported by LLP ‘‘Institute of High Technologies’’(No.RMK-D-018)
文摘Sorption characteristics of ion exchange resins 001 × 7, 005 × 8, D72 regarding rare earth metals (REM) during extraction from barren solution of uranium sorption in dynamic conditions were investigated. It was identified that D72 resin capacity on analyzed REM was 2.46 mg.cm-3 after passing 220 BV (bed volume) of initial solution with 95 % recovery of element of REM with the lowest affinity. Researches on REM desorption in dynamic conditions from investigated ion exchange resins by solution of 1.7 mol.L-1 HNO3 and 8.0 mol.L-1 NHnNO3 with 0.2 mol.L-1 HNO3 passing were carded out. It was identified that using desorption solution based on ammonium nitrate allows to achieve acceptable recovery degree of REM from the resin. The possibility of organization of a circulating desorption solution system increases the perspectives of nitrate ammonium solution usage.