期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deep Residual Network Based on Image Priors for Single Image Super Resolution in FFA Images 被引量:1
1
作者 G.R.Hemalakshmi D.Santhi +2 位作者 V.R.S.Mani A.Geetha n.b.prakash 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期125-143,共19页
Diabetic retinopathy,aged macular degeneration,glaucoma etc.are widely prevalent ocular pathologies which are irreversible at advanced stages.Machine learning based automated detection of these pathologies facilitate ... Diabetic retinopathy,aged macular degeneration,glaucoma etc.are widely prevalent ocular pathologies which are irreversible at advanced stages.Machine learning based automated detection of these pathologies facilitate timely clinical interventions,preventing adverse outcomes.Ophthalmologists screen these pathologies with fundus Fluorescein Angiography Images(FFA)which capture retinal components featuring diverse morphologies such as retinal vasculature,macula,optical disk etc.However,these images have low resolutions,hindering the accurate detection of ocular disorders.Construction of high resolution images from these images,by super resolution approaches expedites the diagnosis of pathologies with better accuracy.This paper presents a deep learning network for Single Image Super Resolution(SISR)of fundus fluorescein angiography images,modeled on residual learning,gridded interpolation and Swish activation functions.The image prior for this network is constructed by gridded interpolation which provides better image fidelity compared to other priors.Evaluation of the performance of this network and comparative analysis with benchmark architectures,on a standard dataset shows that the proposed network is superior with respect to performance metrics and computational time. 展开更多
关键词 SISR FFA residual network gridded interpolation swish function
在线阅读 下载PDF
Segmentation of Brain Tumor Magnetic Resonance Images Using a Teaching-Learning Optimization Algorithm 被引量:1
2
作者 J.Jayanthi M.Kavitha +4 位作者 T.Jayasankar A.Sagai Francis Britto n.b.prakash Mohamed Yacin Sikkandar C.Bharathiraja 《Computers, Materials & Continua》 SCIE EI 2021年第9期4191-4203,共13页
Image recognition is considered to be the pre-eminent paradigm for the automatic detection of tumor diseases in this era.Among various cancers identified so far,glioma,a type of brain tumor,is one of the deadliest can... Image recognition is considered to be the pre-eminent paradigm for the automatic detection of tumor diseases in this era.Among various cancers identified so far,glioma,a type of brain tumor,is one of the deadliest cancers,and it remains challenging to the medicinal world.The only consoling factor is that the survival rate of the patient is increased by remarkable percentage with the early diagnosis of the disease.Early diagnosis is attempted to be accomplished with the changes observed in the images of suspected parts of the brain captured in specific interval of time.From the captured image,the affected part of the brain is analyzed using magnetic resonance imaging(MRI)technique.Existence of different modalities in the captured MRI image demands the best automated model for the easy identification of malignant cells.Number of image processing techniques are available for processing the images to identify the affected area.This study concentrates and proposes to improve early diagnosis of glioma using a preprocessing boosted teaching and learning optimization(P-BTLBO)algorithm that automatically segments a brain tumor in an given MRI image.Preprocessing involves contrast enhancement and skull stripping procedures through contrast limited adaptive histogram equalization technique.The traditional TLBO algorithm that works with the perspective of teacher and the student is here improved by using a boosting mechanism.The results obtained using this P-BTLBO algorithm is compared on different benchmark images for the validation of its standard.The experimental findings show that P-BTLBO algorithm approach outperforms other existing algorithms of its kind. 展开更多
关键词 Brain tumor TLBO algorithm skull stripping PREPROCESSING segmentation
在线阅读 下载PDF
Classification of Glaucoma in Retinal Images Using EfficientnetB4 Deep Learning Model
3
作者 A.Geetha n.b.prakash 《Computer Systems Science & Engineering》 SCIE EI 2022年第12期1041-1055,共15页
Today, many eye diseases jeopardize our everyday lives, such as Diabetic Retinopathy (DR), Age-related Macular Degeneration (AMD), and Glaucoma.Glaucoma is an incurable and unavoidable eye disease that damages the vis... Today, many eye diseases jeopardize our everyday lives, such as Diabetic Retinopathy (DR), Age-related Macular Degeneration (AMD), and Glaucoma.Glaucoma is an incurable and unavoidable eye disease that damages the vision ofoptic nerves and quality of life. Classification of Glaucoma has been an active fieldof research for the past ten years. Several approaches for Glaucoma classification areestablished, beginning with conventional segmentation methods and feature-extraction to deep-learning techniques such as Convolution Neural Networks (CNN). Incontrast, CNN classifies the input images directly using tuned parameters of convolution and pooling layers by extracting features. But, the volume of training datasetsdetermines the performance of the CNN;the model trained with small datasets,overfit issues arise. CNN has therefore developed with transfer learning. The primary aim of this study is to explore the potential of EfficientNet with transfer learning for the classification of Glaucoma. The performance of the current workcompares with other models, namely VGG16, InceptionV3, and Xception usingpublic datasets such as RIM-ONEV2 & V3, ORIGA, DRISHTI-GS1, HRF, andACRIMA. The dataset has split into training, validation, and testing with the ratioof 70:15:15. The assessment of the test dataset shows that the pre-trained EfficientNetB4 has achieved the highest performance value compared to other models listedabove. The proposed method achieved 99.38% accuracy and also better results forother metrics, such as sensitivity, specificity, precision, F1_score, Kappa score, andArea Under Curve (AUC) compared to other models. 展开更多
关键词 Convolution neural network deep learning fundus image GLAUCOMA image classification
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部