Microplastics (MPs), fluoride (FR), and fungicide mancozeb (MZ) are common contaminants in soil. However, there is no information about the combined impacts of MPs, FR, and MZ on tomato plant growth features in the li...Microplastics (MPs), fluoride (FR), and fungicide mancozeb (MZ) are common contaminants in soil. However, there is no information about the combined impacts of MPs, FR, and MZ on tomato plant growth features in the literature. This study aimed to investigate the effects of combined application of MPs, FR, and MZ (both analytical grade and commercial) on the growth and development of tomato plants and metagenomics of rhizosphere soil. A pot experiment was set up in an artificial greenhouse with two sets of treatments. One set was the combined application of MPs, FR, and analytical grade MZ (B2) and a control without the application of MPs, FR, and MZ (W2), and the other set was the combined application of MPs, FR, and commercial MZ (B3) and a control without the application of MPs, FR, and MZ (W3). No detrimental effects of MPs, FR, and MZ were detected on the growth parameters of tomato plants, including the number of leaves and chlorophyll concentration. However, tomato roots showed knot and nodulation-type structures, and metabolomic profiling revealed that combined exposure to MPs, FR, and MZ profoundly reprogrammed the primary metabolism in tomato roots, with marked alterations in carbohydrate and amino acid pathways. Metagenome whole genome sequencing showed that the B2 and B3 treatments profoundly affected soil microbial community composition, diversity, gene abundances, and functional gene variations compared to W2 and W3. Proteobacteria became the dominating phylum in B2 and B3, causing a significant shift in the microbiome. Its abundance soared to 66.7% in B2 and 75.4% in B3, compared to only 35.9% in W2 and 28.9% in W3. On the other hand, Actinobacteria decreased significantly from 55.6% in W2 and 63.8% in W3 to 18.1% in B2 and 9.6% in B3. This study highlights the microbial shifts due to combined application of MPs, FR, and MZ, providing evidence for understanding their environmental risks.展开更多
基金the Department of Science and Technology(DST)-India for providing a departmental grant to the Department of Biochemistry,Central University of Punjab,Bathinda,India,in the form of a DST-Fund for Improvement of S&T Infrastructure(FIST)grant。
文摘Microplastics (MPs), fluoride (FR), and fungicide mancozeb (MZ) are common contaminants in soil. However, there is no information about the combined impacts of MPs, FR, and MZ on tomato plant growth features in the literature. This study aimed to investigate the effects of combined application of MPs, FR, and MZ (both analytical grade and commercial) on the growth and development of tomato plants and metagenomics of rhizosphere soil. A pot experiment was set up in an artificial greenhouse with two sets of treatments. One set was the combined application of MPs, FR, and analytical grade MZ (B2) and a control without the application of MPs, FR, and MZ (W2), and the other set was the combined application of MPs, FR, and commercial MZ (B3) and a control without the application of MPs, FR, and MZ (W3). No detrimental effects of MPs, FR, and MZ were detected on the growth parameters of tomato plants, including the number of leaves and chlorophyll concentration. However, tomato roots showed knot and nodulation-type structures, and metabolomic profiling revealed that combined exposure to MPs, FR, and MZ profoundly reprogrammed the primary metabolism in tomato roots, with marked alterations in carbohydrate and amino acid pathways. Metagenome whole genome sequencing showed that the B2 and B3 treatments profoundly affected soil microbial community composition, diversity, gene abundances, and functional gene variations compared to W2 and W3. Proteobacteria became the dominating phylum in B2 and B3, causing a significant shift in the microbiome. Its abundance soared to 66.7% in B2 and 75.4% in B3, compared to only 35.9% in W2 and 28.9% in W3. On the other hand, Actinobacteria decreased significantly from 55.6% in W2 and 63.8% in W3 to 18.1% in B2 and 9.6% in B3. This study highlights the microbial shifts due to combined application of MPs, FR, and MZ, providing evidence for understanding their environmental risks.