期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improving the Ambient Intelligence Living Using Deep Learning Classifier
1
作者 Yazeed Yasin Ghadi Mouazma Batool +4 位作者 munkhjargal gochoo Suliman AAlsuhibany Tamara al Shloul Ahmad Jalal Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2022年第10期1037-1053,共17页
Over the last decade,there is a surge of attention in establishing ambient assisted living(AAL)solutions to assist individuals live independently.With a social and economic perspective,the demographic shift toward an ... Over the last decade,there is a surge of attention in establishing ambient assisted living(AAL)solutions to assist individuals live independently.With a social and economic perspective,the demographic shift toward an elderly population has brought new challenges to today’s society.AAL can offer a variety of solutions for increasing people’s quality of life,allowing them to live healthier and more independently for longer.In this paper,we have proposed a novel AAL solution using a hybrid bidirectional long-term and short-term memory networks(BiLSTM)and convolutional neural network(CNN)classifier.We first pre-processed the signal data,then used timefrequency features such as signal energy,signal variance,signal frequency,empirical mode,and empirical mode decomposition.The convolutional neural network-bidirectional long-term and short-term memory(CNN-biLSTM)classifier with dimensional reduction isomap algorithm was then used to select ideal features.We assessed the performance of our proposed system on the publicly accessible human gait database(HuGaDB)benchmark dataset and achieved an accuracy rates of 93.95 percent,respectively.Experiments reveal that hybrid method gives more accuracy than single classifier in AAL model.The suggested system can assists persons with impairments,assisting carers and medical personnel. 展开更多
关键词 Ambient assisted living convolutional neural network dimensionality reduction frequency-time features wearable technology
在线阅读 下载PDF
Student’s Health Exercise Recognition Tool for E-Learning Education
2
作者 Tamara al Shloul Madiha Javeed +4 位作者 munkhjargal gochoo Suliman AAlsuhibany Yazeed Yasin Ghadi Ahmad Jalal Jeongmin Park 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期149-161,共13页
Due to the recently increased requirements of e-learning systems,multiple educational institutes such as kindergarten have transformed their learning towards virtual education.Automated student health exercise is a di... Due to the recently increased requirements of e-learning systems,multiple educational institutes such as kindergarten have transformed their learning towards virtual education.Automated student health exercise is a difficult task but an important one due to the physical education needs especially in young learners.The proposed system focuses on the necessary implementation of student health exercise recognition(SHER)using a modified Quaternion-basedfilter for inertial data refining and data fusion as the pre-processing steps.Further,cleansed data has been segmented using an overlapping windowing approach followed by patterns identification in the form of static and kinematic signal patterns.Furthermore,these patterns have been utilized to extract cues for both patterned signals,which are further optimized using Fisher’s linear discriminant analysis(FLDA)technique.Finally,the physical exercise activities have been categorized using extended Kalmanfilter(EKF)-based neural networks.This system can be implemented in multiple educational establishments including intelligent training systems,virtual mentors,smart simulations,and interactive learning management methods. 展开更多
关键词 E-LEARNING exercise recognition online physical education student’s healthcare
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部