Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to underst...Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations.展开更多
Agricultural soils are deficient of phosphorus (P) worldwide. Phosphatic fertilizers are therefore applied to agricultural soils to improve the fertility and to increase the crop yield. However, the effect of phosph...Agricultural soils are deficient of phosphorus (P) worldwide. Phosphatic fertilizers are therefore applied to agricultural soils to improve the fertility and to increase the crop yield. However, the effect of phosphorus application on soil N2O emissions has rarety been studied. Therefore, we conducted a laboratory study to investigate the effects P addition on soil N2O emissions from P deficient alluvial soil under two levels of nitrogen (N) fertilizer and soil moisture. Treatments were arranged as follows: P (0 and 20 mg P kg-1) was applied to soil under two moisture levels of 60 and 90% water filled pore space (WFPS). Each P and moisture treatment was further treated with two levels of N fertilizer (0 and 200 mg N kg-1 as urea). Soil variables including mineral nitrogen (NH4+-N and NO3--N), available P, dissolved organic carbon (DOC), and soil N2O emissions were measured throughout the study period of 50 days. Results showed that addition of P increased N2O emis- sions either under 60% WFPS or 90% WFPS conditions. Higher N2O emissions were observed under 90% WFPS when compared to 60% WFPS. Application of N fertilizer also enhanced N2O emissions and the highest emissions were 141 μg N2O kg-1 h-1 in P+N treatment under 90% WFPS. The results of the present study suggest that P application markedly increases soil N2O emissions under both low and high soil moisture levels, and either with or without N fertilizer application.展开更多
Soil salinity affects the growth and yield of crops.The stress of soil salinity on plants can be mitigated by inoculation of plant growth promoting bacteria(PGPR).The influence of PGPR inoculation on wheat(Triticum ae...Soil salinity affects the growth and yield of crops.The stress of soil salinity on plants can be mitigated by inoculation of plant growth promoting bacteria(PGPR).The influence of PGPR inoculation on wheat(Triticum aestivum L.)crop productivity under salinity stress has not been properly addressed so far.Therefore,the present study was conducted to investigate the effects of various PGPR strains(W14,W10 and 6K;alone and combined)at several growth attributes of wheat plant under different soil salinity gradients(3,6 and 9 dS m-1).The growth attributes of wheat(height,roots,shoots,spikes,grains quality,biological and economical yield,nutrients nitrogen,phosphorus and potassium in grains)were highly affected by salinity and decreased with increasing salinity level.The PGPR inoculation substantially promoted growth attributes of wheat and prominent results were observed in W14×W10×6K treatment at all salinity levels.The results suggest that inoculation of PGPR is a potential strategy to mitigate salinity stress for improving wheat growth and yield.展开更多
Biochar addition has been widely used in the field to mitigate soil nitrous oxide(N_(2)O)emissions,and can be considered as a potential method to reduce N_(2)O emissions during vermicomposting.However,excessive biocha...Biochar addition has been widely used in the field to mitigate soil nitrous oxide(N_(2)O)emissions,and can be considered as a potential method to reduce N_(2)O emissions during vermicomposting.However,excessive biochar addition may inhibit earthworms’activity.Thus,it is crucial to clarify the optimum addition volumes of biochar during vermicomposting.This study evaluated the impact of addition of various amounts of biochar(0,5,10,15,20 and 25%of total amount of feedstock)on earthworms’(Eisenia fetida)activity,N_(2)O emission and compost quality during vermicomposting.Compared with the treatment without biochar added,5%of biochar application significantly increased earthworm total biomass(from 177.5 to 202.2 g pot^(−1)),and cumulative burrowing activity(from 47.0%to 52.2%pixel per terrarium).The increased earthworms activity stimulated the vermicomposting process and led to the best quality of compost,which showed the highest total nutrient content(5.38%)and a significantly higher germination percentage of seeds(88%).Although N_(2)O emissions were slightly increased by 5%biochar addition,a nonsignificant difference was found between the treatment with 5%biochar and the treatment without biochar added.On the contrary,20%and 25%biochar addition not only lowered N_(2)O emissions,but also significantly decreased the quality of compost.The results suggest that 5%biochar application is an appropriate amount to improve the quality of compost without significant N_(2)O emissions.展开更多
Background:The size of lime material is vital for the efficiency of ameliorating soil acidity,thereby influencing soil biochemical processes.However,the effects of different sized lime material application on soil org...Background:The size of lime material is vital for the efficiency of ameliorating soil acidity,thereby influencing soil biochemical processes.However,the effects of different sized lime material application on soil organic carbon(SOC)mineralization are yet to be elucidated.Therefore,a 35-day incubation experiment was conducted to determine the effects of three particle size fractions(0.5 to 0.25,0.25 to 0.15,and<0.15 mm)of dolomite on SOC mineralization of two acidic paddy soils.Results:CO_(2) emission was increased by 3–7%,11–21%,and 32–49%for coarse-,medium-,and fine-sized dolomite treatments,respectively,compared to the control in both soils.They also well conformed to a first-order model in all treatments,and the estimated decomposition rate constant was significantly higher in the fine-sized treatment than that of other treatments(P<0.05),indicating that SOC turnover rate was dependent on the dolomite size.The finer particle sizes were characterized with higher efficiencies of modifying soil pH,consequently resulting in higher dissolved organic carbon contents and microbial biomass carbon,eventually leading to higher CO_(2) emissions.Conclusions:The results demonstrate that the size of dolomite is a key factor in regulating SOC mineralization in acidic paddy soils when dolomite is applied to manipulate soil pH.展开更多
Chemosensory proteins (CSPs) have great contributions in performing diverse functions in insects. However, physiological appraisal of chemosensory protein genes still remains elusive in insects. We studied expression ...Chemosensory proteins (CSPs) have great contributions in performing diverse functions in insects. However, physiological appraisal of chemosensory protein genes still remains elusive in insects. We studied expression patterns and binding affinities of MsepCSP14, a chemosensory protein, in Mythimna separata. The distinct functions of MsepCSP14 were validated by employing different molecular techniques. The MsepCSP14 had high resemblance of sequence with chemosensory proteins of other insect family members. The MsepCSP14 expression was higher in antennal tissues of females than other tissues. Fluorescence binding assay validated that binding of nine out of 21 ligands to MsepCSP14 was higher at pH 7.4 than at pH 5.0. Three dimensional modeling (3D) and docking analysis predicted that amino acid residues of MsepCSP14 were involved in binding of compounds, and behavior assay displayed that adults of M. separata considerably responded to four volatiles from compounds demonstrating strong binding ability to MsepCSP14. Results of the present study suggest that MsepCSP14 is likely to mediate chemosensory functions in M. separata.展开更多
基金the National Key Research and Development Program of China(2017YFD0800102)the Hubei Provincial Key Research and Development Program,China(2021BCA156)。
文摘Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations.
基金supported by the National Basic Research Program of China (2012CB417106)the National Natural Science Foundation of China (41171212)
文摘Agricultural soils are deficient of phosphorus (P) worldwide. Phosphatic fertilizers are therefore applied to agricultural soils to improve the fertility and to increase the crop yield. However, the effect of phosphorus application on soil N2O emissions has rarety been studied. Therefore, we conducted a laboratory study to investigate the effects P addition on soil N2O emissions from P deficient alluvial soil under two levels of nitrogen (N) fertilizer and soil moisture. Treatments were arranged as follows: P (0 and 20 mg P kg-1) was applied to soil under two moisture levels of 60 and 90% water filled pore space (WFPS). Each P and moisture treatment was further treated with two levels of N fertilizer (0 and 200 mg N kg-1 as urea). Soil variables including mineral nitrogen (NH4+-N and NO3--N), available P, dissolved organic carbon (DOC), and soil N2O emissions were measured throughout the study period of 50 days. Results showed that addition of P increased N2O emis- sions either under 60% WFPS or 90% WFPS conditions. Higher N2O emissions were observed under 90% WFPS when compared to 60% WFPS. Application of N fertilizer also enhanced N2O emissions and the highest emissions were 141 μg N2O kg-1 h-1 in P+N treatment under 90% WFPS. The results of the present study suggest that P application markedly increases soil N2O emissions under both low and high soil moisture levels, and either with or without N fertilizer application.
文摘Soil salinity affects the growth and yield of crops.The stress of soil salinity on plants can be mitigated by inoculation of plant growth promoting bacteria(PGPR).The influence of PGPR inoculation on wheat(Triticum aestivum L.)crop productivity under salinity stress has not been properly addressed so far.Therefore,the present study was conducted to investigate the effects of various PGPR strains(W14,W10 and 6K;alone and combined)at several growth attributes of wheat plant under different soil salinity gradients(3,6 and 9 dS m-1).The growth attributes of wheat(height,roots,shoots,spikes,grains quality,biological and economical yield,nutrients nitrogen,phosphorus and potassium in grains)were highly affected by salinity and decreased with increasing salinity level.The PGPR inoculation substantially promoted growth attributes of wheat and prominent results were observed in W14×W10×6K treatment at all salinity levels.The results suggest that inoculation of PGPR is a potential strategy to mitigate salinity stress for improving wheat growth and yield.
基金Major Science and Technology Program of Hainan Province(ZDKJ2021009)National Natural Science Foundation of China(32171638)Yunan Science and Technology Talents and Platform Program(202205AF150004).
文摘Biochar addition has been widely used in the field to mitigate soil nitrous oxide(N_(2)O)emissions,and can be considered as a potential method to reduce N_(2)O emissions during vermicomposting.However,excessive biochar addition may inhibit earthworms’activity.Thus,it is crucial to clarify the optimum addition volumes of biochar during vermicomposting.This study evaluated the impact of addition of various amounts of biochar(0,5,10,15,20 and 25%of total amount of feedstock)on earthworms’(Eisenia fetida)activity,N_(2)O emission and compost quality during vermicomposting.Compared with the treatment without biochar added,5%of biochar application significantly increased earthworm total biomass(from 177.5 to 202.2 g pot^(−1)),and cumulative burrowing activity(from 47.0%to 52.2%pixel per terrarium).The increased earthworms activity stimulated the vermicomposting process and led to the best quality of compost,which showed the highest total nutrient content(5.38%)and a significantly higher germination percentage of seeds(88%).Although N_(2)O emissions were slightly increased by 5%biochar addition,a nonsignificant difference was found between the treatment with 5%biochar and the treatment without biochar added.On the contrary,20%and 25%biochar addition not only lowered N_(2)O emissions,but also significantly decreased the quality of compost.The results suggest that 5%biochar application is an appropriate amount to improve the quality of compost without significant N_(2)O emissions.
基金National Key Research and Development Program of China(2017YFD0800102)Research Project of Hubei Provincial Department of Education(D20202503).
文摘Background:The size of lime material is vital for the efficiency of ameliorating soil acidity,thereby influencing soil biochemical processes.However,the effects of different sized lime material application on soil organic carbon(SOC)mineralization are yet to be elucidated.Therefore,a 35-day incubation experiment was conducted to determine the effects of three particle size fractions(0.5 to 0.25,0.25 to 0.15,and<0.15 mm)of dolomite on SOC mineralization of two acidic paddy soils.Results:CO_(2) emission was increased by 3–7%,11–21%,and 32–49%for coarse-,medium-,and fine-sized dolomite treatments,respectively,compared to the control in both soils.They also well conformed to a first-order model in all treatments,and the estimated decomposition rate constant was significantly higher in the fine-sized treatment than that of other treatments(P<0.05),indicating that SOC turnover rate was dependent on the dolomite size.The finer particle sizes were characterized with higher efficiencies of modifying soil pH,consequently resulting in higher dissolved organic carbon contents and microbial biomass carbon,eventually leading to higher CO_(2) emissions.Conclusions:The results demonstrate that the size of dolomite is a key factor in regulating SOC mineralization in acidic paddy soils when dolomite is applied to manipulate soil pH.
基金This study was funded by the National Key Research and Development Program of China(2017YFE0113900)Special Technical Innovation of Hubei Province(2017ABA146).
文摘Chemosensory proteins (CSPs) have great contributions in performing diverse functions in insects. However, physiological appraisal of chemosensory protein genes still remains elusive in insects. We studied expression patterns and binding affinities of MsepCSP14, a chemosensory protein, in Mythimna separata. The distinct functions of MsepCSP14 were validated by employing different molecular techniques. The MsepCSP14 had high resemblance of sequence with chemosensory proteins of other insect family members. The MsepCSP14 expression was higher in antennal tissues of females than other tissues. Fluorescence binding assay validated that binding of nine out of 21 ligands to MsepCSP14 was higher at pH 7.4 than at pH 5.0. Three dimensional modeling (3D) and docking analysis predicted that amino acid residues of MsepCSP14 were involved in binding of compounds, and behavior assay displayed that adults of M. separata considerably responded to four volatiles from compounds demonstrating strong binding ability to MsepCSP14. Results of the present study suggest that MsepCSP14 is likely to mediate chemosensory functions in M. separata.