In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fi...In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fields,including computer games,smart homes,expression analysis,gesture recognition,surveillance films,depression therapy,patientmonitoring,anxiety,and others,have brought attention to its significant academic and commercial importance.This study emphasizes research that has only employed facial images for face expression recognition(FER),because facial expressions are a basic way that people communicate meaning to each other.The immense achievement of deep learning has resulted in a growing use of its much architecture to enhance efficiency.This review is on machine learning,deep learning,and hybrid methods’use of preprocessing,augmentation techniques,and feature extraction for temporal properties of successive frames of data.The following section gives a brief summary of assessment criteria that are accessible to the public and then compares them with benchmark results the most trustworthy way to assess FER-related research topics statistically.In this review,a brief synopsis of the subject matter may be beneficial for novices in the field of FER as well as seasoned scholars seeking fruitful avenues for further investigation.The information conveys fundamental knowledge and provides a comprehensive understanding of the most recent state-of-the-art research.展开更多
DeepSeek Chinese artificial intelligence(AI)open-source model,has gained a lot of attention due to its economical training and efficient inference.DeepSeek,a model trained on large-scale reinforcement learning without...DeepSeek Chinese artificial intelligence(AI)open-source model,has gained a lot of attention due to its economical training and efficient inference.DeepSeek,a model trained on large-scale reinforcement learning without supervised fine-tuning as a preliminary step,demonstrates remarkable reasoning capabilities of performing a wide range of tasks.DeepSeek is a prominent AI-driven chatbot that assists individuals in learning and enhances responses by generating insightful solutions to inquiries.Users possess divergent viewpoints regarding advanced models like DeepSeek,posting both their merits and shortcomings across several social media platforms.This research presents a new framework for predicting public sentiment to evaluate perceptions of DeepSeek.To transform the unstructured data into a suitable manner,we initially collect DeepSeek-related tweets from Twitter and subsequently implement various preprocessing methods.Subsequently,we annotated the tweets utilizing the Valence Aware Dictionary and sentiment Reasoning(VADER)methodology and the lexicon-driven TextBlob.Next,we classified the attitudes obtained from the purified data utilizing the proposed hybrid model.The proposed hybrid model consists of long-term,shortterm memory(LSTM)and bidirectional gated recurrent units(BiGRU).To strengthen it,we include multi-head attention,regularizer activation,and dropout units to enhance performance.Topic modeling employing KMeans clustering and Latent Dirichlet Allocation(LDA),was utilized to analyze public behavior concerning DeepSeek.The perceptions demonstrate that 82.5%of the people are positive,15.2%negative,and 2.3%neutral using TextBlob,and 82.8%positive,16.1%negative,and 1.2%neutral using the VADER analysis.The slight difference in results ensures that both analyses concur with their overall perceptions and may have distinct views of language peculiarities.The results indicate that the proposed model surpassed previous state-of-the-art approaches.展开更多
Large language models(LLMs)and natural language processing(NLP)have significant promise to improve efficiency and refine healthcare decision-making and clinical results.Numerous domains,including healthcare,are rapidl...Large language models(LLMs)and natural language processing(NLP)have significant promise to improve efficiency and refine healthcare decision-making and clinical results.Numerous domains,including healthcare,are rapidly adopting LLMs for the classification of biomedical textual data in medical research.The LLM can derive insights from intricate,extensive,unstructured training data.Variants need to be accurately identified and classified to advance genetic research,provide individualized treatment,and assist physicians in making better choices.However,the sophisticated and perplexing language of medical reports is often beyond the capabilities of the devices we now utilize.Such an approach may result in incorrect diagnoses,which could affect a patient’s prognosis and course of therapy.This study evaluated the efficacy of the proposed model by looking at publicly accessible textual clinical data.We have cleaned the clinical textual data using various text preprocessing methods,including stemming,tokenization,and stop word removal.The important features are extracted using Bag of Words(BoW)and Term Frequency-Inverse Document Frequency(TFIDF)feature engineering methods.The important motive of this study is to predict the genetic variants based on the clinical evidence using a novel method with minimal error.According to the experimental results,the random forest model achieved 61%accuracy with 67%precision for class 9 using TFIDF features and 63%accuracy and a 73%F1 score for class 9 using Bag of Words features.The accuracy of the proposed BERT(Bidirectional Encoder Representations from Transformers)model was 70%with 5-fold cross-validation and 71%with 10-fold cross-validation.The research results provide a comprehensive overview of current LLM methods in healthcare,benefiting academics as well as professionals in the discipline.展开更多
Osteosarcomas are malignant neoplasms derived from undifferentiated osteogenic mesenchymal cells. It causes severe and permanent damage to human tissue and has a high mortality rate. The condition has the capacity to ...Osteosarcomas are malignant neoplasms derived from undifferentiated osteogenic mesenchymal cells. It causes severe and permanent damage to human tissue and has a high mortality rate. The condition has the capacity to occur in any bone;however, it often impacts long bones like the arms and legs. Prompt identification and prompt intervention are essential for augmenting patient longevity. However, the intricate composition and erratic placement of osteosarcoma provide difficulties for clinicians in accurately determining the scope of the afflicted area. There is a pressing requirement for developing an algorithm that can automatically detect bone tumors with tremendous accuracy. Therefore, in this study, we proposed a novel feature extractor framework associated with a supervised three-class XGBoost algorithm for the detection of osteosarcoma in whole slide histopathology images. This method allows for quicker and more effective data analysis. The first step involves preprocessing the imbalanced histopathology dataset, followed by augmentation and balancing utilizing two techniques: SMOTE and ADASYN. Next, a unique feature extraction framework is used to extract features, which are then inputted into the supervised three-class XGBoost algorithm for classification into three categories: non-tumor, viable tumor, and non-viable tumor. The experimental findings indicate that the proposed model exhibits superior efficiency, accuracy, and a more lightweight design in comparison to other current models for osteosarcoma detection.展开更多
This study aims to develop a computational pathology approach that can properly detect and distinguish histology nuclei.This is crucial for histopathological image analysis,as it involves segmenting cell nuclei.Howeve...This study aims to develop a computational pathology approach that can properly detect and distinguish histology nuclei.This is crucial for histopathological image analysis,as it involves segmenting cell nuclei.However,challenges exist,such as determining the boundary region of normal and deformed nuclei and identifying small,irregular nuclei structures.Deep learning approaches are currently dominant in digital pathology for nucleus recognition and classification,but their complex features limit their practical use in clinical settings.The existing studies have limited accuracy,significant processing costs,and a lack of resilience and generalizability across diverse datasets.We proposed the densely convolutional Breast U-shaped Network(BU-NET)framework to overcome the mentioned issues.The study employs BU-NET’s spatial and channel attention methods to enhance segmentation processes.The inclusion of residual blocks and skip connections in the BU-NEt architecture enhances the process of extracting features and reconstructing the output.This enhances the robustness of training and convergence processes by reducing the occurrence of vanishing gradients.The primary objective of BU-NEt is to enhance the model’s capacity to acquire and analyze more intricate features,all the while preserving an efficient working representation.The BU-NET experiments demonstrate that the framework achieved 88.7%average accuracy,88.8%F1 score for Multi-Organ Nuclei Segmentation Challenge(MoNuSeg),and 91.2%average accuracy,91.8%average F1 for the triple-negative breast cancer(TNBC)dataset.The framework also achieved 93.92 Area under the ROC Curve(AUC)for TNBC.The results demonstrated that the technology surpasses existing techniques in terms of accuracy and effectiveness in segmentation.Furthermore,it showcases the ability to withstand and recover from different tissue types and diseases,indicating possible uses in medical treatments.The research evaluated the efficacy of the proposed method on diverse histopathological imaging datasets,including cancer cells from many organs.The densely connected U-NEt technology offers a promising approach for automating and precisely segmenting cancer cells on histopathology slides,hence assisting pathologists in improving cancer diagnosis and treatment outcomes.展开更多
The environmental challenges across the world step up the researcher's interest in different energy resources.Semitransparent perovskite solar cells(STPSCs)could expedite generation of electricity as well as shows...The environmental challenges across the world step up the researcher's interest in different energy resources.Semitransparent perovskite solar cells(STPSCs)could expedite generation of electricity as well as shows reassuring its significance in flexible electronics and building-integrating photovoltaic as so forth in the next decade.It is highly recommended to endorse the relevance of semitransparent solar devices to fulfill the required level of energy even by using the roofs and windows of the buildings.In this review article,we pay more attention to recent developments of ST-PSCs.Herein,a succinct overview of latest research about semitransparent solar cell technologies and ST-PSCs is summarized.Moreover,the strategies to enhance the transparency of solar cells are described utilizing structure,transparent electrodes,perovskite film formation,tandem solar cells,color tuning,and human eye perception.Last but not least is that the serious concerns about stability of ST-PSCs are vividly reviewed.展开更多
文摘In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fields,including computer games,smart homes,expression analysis,gesture recognition,surveillance films,depression therapy,patientmonitoring,anxiety,and others,have brought attention to its significant academic and commercial importance.This study emphasizes research that has only employed facial images for face expression recognition(FER),because facial expressions are a basic way that people communicate meaning to each other.The immense achievement of deep learning has resulted in a growing use of its much architecture to enhance efficiency.This review is on machine learning,deep learning,and hybrid methods’use of preprocessing,augmentation techniques,and feature extraction for temporal properties of successive frames of data.The following section gives a brief summary of assessment criteria that are accessible to the public and then compares them with benchmark results the most trustworthy way to assess FER-related research topics statistically.In this review,a brief synopsis of the subject matter may be beneficial for novices in the field of FER as well as seasoned scholars seeking fruitful avenues for further investigation.The information conveys fundamental knowledge and provides a comprehensive understanding of the most recent state-of-the-art research.
文摘DeepSeek Chinese artificial intelligence(AI)open-source model,has gained a lot of attention due to its economical training and efficient inference.DeepSeek,a model trained on large-scale reinforcement learning without supervised fine-tuning as a preliminary step,demonstrates remarkable reasoning capabilities of performing a wide range of tasks.DeepSeek is a prominent AI-driven chatbot that assists individuals in learning and enhances responses by generating insightful solutions to inquiries.Users possess divergent viewpoints regarding advanced models like DeepSeek,posting both their merits and shortcomings across several social media platforms.This research presents a new framework for predicting public sentiment to evaluate perceptions of DeepSeek.To transform the unstructured data into a suitable manner,we initially collect DeepSeek-related tweets from Twitter and subsequently implement various preprocessing methods.Subsequently,we annotated the tweets utilizing the Valence Aware Dictionary and sentiment Reasoning(VADER)methodology and the lexicon-driven TextBlob.Next,we classified the attitudes obtained from the purified data utilizing the proposed hybrid model.The proposed hybrid model consists of long-term,shortterm memory(LSTM)and bidirectional gated recurrent units(BiGRU).To strengthen it,we include multi-head attention,regularizer activation,and dropout units to enhance performance.Topic modeling employing KMeans clustering and Latent Dirichlet Allocation(LDA),was utilized to analyze public behavior concerning DeepSeek.The perceptions demonstrate that 82.5%of the people are positive,15.2%negative,and 2.3%neutral using TextBlob,and 82.8%positive,16.1%negative,and 1.2%neutral using the VADER analysis.The slight difference in results ensures that both analyses concur with their overall perceptions and may have distinct views of language peculiarities.The results indicate that the proposed model surpassed previous state-of-the-art approaches.
基金funded by Princess Nourah bint Abdulrahman University and Researchers Supporting Project number(PNURSP2025R346),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Large language models(LLMs)and natural language processing(NLP)have significant promise to improve efficiency and refine healthcare decision-making and clinical results.Numerous domains,including healthcare,are rapidly adopting LLMs for the classification of biomedical textual data in medical research.The LLM can derive insights from intricate,extensive,unstructured training data.Variants need to be accurately identified and classified to advance genetic research,provide individualized treatment,and assist physicians in making better choices.However,the sophisticated and perplexing language of medical reports is often beyond the capabilities of the devices we now utilize.Such an approach may result in incorrect diagnoses,which could affect a patient’s prognosis and course of therapy.This study evaluated the efficacy of the proposed model by looking at publicly accessible textual clinical data.We have cleaned the clinical textual data using various text preprocessing methods,including stemming,tokenization,and stop word removal.The important features are extracted using Bag of Words(BoW)and Term Frequency-Inverse Document Frequency(TFIDF)feature engineering methods.The important motive of this study is to predict the genetic variants based on the clinical evidence using a novel method with minimal error.According to the experimental results,the random forest model achieved 61%accuracy with 67%precision for class 9 using TFIDF features and 63%accuracy and a 73%F1 score for class 9 using Bag of Words features.The accuracy of the proposed BERT(Bidirectional Encoder Representations from Transformers)model was 70%with 5-fold cross-validation and 71%with 10-fold cross-validation.The research results provide a comprehensive overview of current LLM methods in healthcare,benefiting academics as well as professionals in the discipline.
文摘Osteosarcomas are malignant neoplasms derived from undifferentiated osteogenic mesenchymal cells. It causes severe and permanent damage to human tissue and has a high mortality rate. The condition has the capacity to occur in any bone;however, it often impacts long bones like the arms and legs. Prompt identification and prompt intervention are essential for augmenting patient longevity. However, the intricate composition and erratic placement of osteosarcoma provide difficulties for clinicians in accurately determining the scope of the afflicted area. There is a pressing requirement for developing an algorithm that can automatically detect bone tumors with tremendous accuracy. Therefore, in this study, we proposed a novel feature extractor framework associated with a supervised three-class XGBoost algorithm for the detection of osteosarcoma in whole slide histopathology images. This method allows for quicker and more effective data analysis. The first step involves preprocessing the imbalanced histopathology dataset, followed by augmentation and balancing utilizing two techniques: SMOTE and ADASYN. Next, a unique feature extraction framework is used to extract features, which are then inputted into the supervised three-class XGBoost algorithm for classification into three categories: non-tumor, viable tumor, and non-viable tumor. The experimental findings indicate that the proposed model exhibits superior efficiency, accuracy, and a more lightweight design in comparison to other current models for osteosarcoma detection.
基金funded by Princess Nourah bint Abdulrahman University and Researchers supporting Project number (PNURSP2024R346),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘This study aims to develop a computational pathology approach that can properly detect and distinguish histology nuclei.This is crucial for histopathological image analysis,as it involves segmenting cell nuclei.However,challenges exist,such as determining the boundary region of normal and deformed nuclei and identifying small,irregular nuclei structures.Deep learning approaches are currently dominant in digital pathology for nucleus recognition and classification,but their complex features limit their practical use in clinical settings.The existing studies have limited accuracy,significant processing costs,and a lack of resilience and generalizability across diverse datasets.We proposed the densely convolutional Breast U-shaped Network(BU-NET)framework to overcome the mentioned issues.The study employs BU-NET’s spatial and channel attention methods to enhance segmentation processes.The inclusion of residual blocks and skip connections in the BU-NEt architecture enhances the process of extracting features and reconstructing the output.This enhances the robustness of training and convergence processes by reducing the occurrence of vanishing gradients.The primary objective of BU-NEt is to enhance the model’s capacity to acquire and analyze more intricate features,all the while preserving an efficient working representation.The BU-NET experiments demonstrate that the framework achieved 88.7%average accuracy,88.8%F1 score for Multi-Organ Nuclei Segmentation Challenge(MoNuSeg),and 91.2%average accuracy,91.8%average F1 for the triple-negative breast cancer(TNBC)dataset.The framework also achieved 93.92 Area under the ROC Curve(AUC)for TNBC.The results demonstrated that the technology surpasses existing techniques in terms of accuracy and effectiveness in segmentation.Furthermore,it showcases the ability to withstand and recover from different tissue types and diseases,indicating possible uses in medical treatments.The research evaluated the efficacy of the proposed method on diverse histopathological imaging datasets,including cancer cells from many organs.The densely connected U-NEt technology offers a promising approach for automating and precisely segmenting cancer cells on histopathology slides,hence assisting pathologists in improving cancer diagnosis and treatment outcomes.
基金International Science&Technology Cooperation Program of China,Grant/Award Number:2014DFG12390International Science&Technology Cooperation Program of Jilin,Grant/Award Number:20190701023GH+4 种基金National Key Research Program of China,Grant/Award Number:2016YFB0401001National Natural Science Foundation of China,Grant/Award Numbers:61275024,61377026,61675088,61974054Opened Fund of the State Key Laboratory on Integrated Optoelectronics,Grant/Award Number:IOSKL2016KF08Project of Science and Technology Development Plan of Jilin Province,Grant/Award Number:20200401045GXScientific and Technological Developing Scheme of Jilin Province,Grant/Award Numbers:20130102009JC,20130206020GX,20140101204JC,20140520071JH。
文摘The environmental challenges across the world step up the researcher's interest in different energy resources.Semitransparent perovskite solar cells(STPSCs)could expedite generation of electricity as well as shows reassuring its significance in flexible electronics and building-integrating photovoltaic as so forth in the next decade.It is highly recommended to endorse the relevance of semitransparent solar devices to fulfill the required level of energy even by using the roofs and windows of the buildings.In this review article,we pay more attention to recent developments of ST-PSCs.Herein,a succinct overview of latest research about semitransparent solar cell technologies and ST-PSCs is summarized.Moreover,the strategies to enhance the transparency of solar cells are described utilizing structure,transparent electrodes,perovskite film formation,tandem solar cells,color tuning,and human eye perception.Last but not least is that the serious concerns about stability of ST-PSCs are vividly reviewed.