Developing high ionic conducting electrolytes is crucial for applying proton-conducting fuel cell(PCFCs)practically.The cur-rent study investigates the effect of alumina on the structural,morphological,electrical,and ...Developing high ionic conducting electrolytes is crucial for applying proton-conducting fuel cell(PCFCs)practically.The cur-rent study investigates the effect of alumina on the structural,morphological,electrical,and electrochemical properties of CeO_(2).Lattice oxygen vacancies are induced in CeO_(2) by a general doping concept that enables fast ionic conduction at low-temperature ranges(300-500℃)for PCFCs.Rietveld refinement of the X-ray diffraction(XRD)patterns established the pure cubic fluorite structure of Al-doped CeO_(2)(ADC)samples and confirmed Al ions’fruitful integration in the CeO_(2) lattice.The electronic structure of the alumina-doped ceria of the materials(10ADC,20ADC,and 30ADC)has been investigated.As a result,it was found that the best composition of 30ADC-based electrolytes induced maximum lattice oxygen vacancies.The corresponding PCFC exhibited a maximum power output of 923 mW/cm^(2)at 500℃.Moreover,the investigation proves the proton-conducting ability of alumina-doped ceria-based fuel cells by using an oxide ion-blocking layer.展开更多
Locally Advance Breast Cancer refers to a heterogeneous group of breast cancer with locally extensive disease, which may or may not involve the nodes, without any distant metastases. The study was conducted at Faisala...Locally Advance Breast Cancer refers to a heterogeneous group of breast cancer with locally extensive disease, which may or may not involve the nodes, without any distant metastases. The study was conducted at Faisalabad Medical University (FMU), Oncology, Allied Hospital Faisalabad (Pakistan). Data of 100 patients with LABC was collected. Demographics were recorded in the form of age, socio-economic status. In clinical data, time of presentation, family history of breast cancer, the presenting symptom in the form of lump, ulceration and other skin changes were noted. Histo-pathological variables including tumor size, histopathology, Bloom & Richardson grading, estrogen receptor (ER), progesterone receptor status (PR) and HER2 status. Results showed that after following a standard trimodality treatment approach in LABC patients, 30 percent died within two years. Disease free survival for more than two years was observed in only 25% of patients. Whereas, 70% patients had eventful (Recurrence/metastases) survival. This poor outcome was observed due to lack of health care facilities, awareness and poor socioeconomic status.展开更多
Trace metals such as manganese(Mn),copper(Cu),zinc(Zn),and iron(Fe)are essential for many biological processes in plant life cycles.However,in excess,they can be toxic and disrupt plant growth processes,which is econo...Trace metals such as manganese(Mn),copper(Cu),zinc(Zn),and iron(Fe)are essential for many biological processes in plant life cycles.However,in excess,they can be toxic and disrupt plant growth processes,which is economically undesirable for crop production.For this reason,processes such as homeostasis and transport control of these trace metals are of constant interest to scientists studying heavily contaminated habitats.Phytoremediation is a promising cleanup technology for soils polluted with heavy metals.However,this technique has some disadvantages,such as the slow growth rate of metal-accumulating plant species,low bioavailability of heavy metals,and long duration of remediation.Microbial-assisted phytoremediation is a promising strategy for hyperaccumulating,detoxifying,or remediating soil contaminants.Arbuscular mycorrhizal fungi(AMF)are found in association with almost all plants,contributing to their healthy performance and providing resistance against environmental stresses.They colonize plant roots and extend their hyphae to the rhizosphere region,assisting in mineral nutrient uptake and regulation of heavy metal acquisition.Endophytic fungi exist in every healthy plant tissue and provide enormous services to their host plants,including growth enhancement by nutrient acquisition,detoxification of heavy metals,secondary metabolite regulation,and enhancement of abiotic/biotic stress tolerance.The aim of the present work is to review the recent literature regarding the role of AMF and endophytic fungi in plant heavy metal tolerance in terms of its regulation in highly contaminated conditions.展开更多
Flavonoids are widely-distributed polyphenolic secondary metabolites with diverse biological activities in plants and benefit human health as protective dietary agents.They participate in plants' responses to hars...Flavonoids are widely-distributed polyphenolic secondary metabolites with diverse biological activities in plants and benefit human health as protective dietary agents.They participate in plants' responses to harsh environmental conditions and effectively regulate the cell differentiation and growth.In plants,the majority of their functions are attributed to their strong antioxidative properties.Similarly,dietary flavonoids protect the human body against free radicals which are associated with the development of cancer and atherosclerosis.Plants rich in polyphenols have been used to cure various diseases because of their antibacterial,antiviral,antifungal and anticancer properties.This review summarizes the up-to-date research trends and development on flavonoids and its derivatives,working mechanisms and potential functions and applications particularly in relation to plant protection and human health.Towards the end,notable concluding remarks with a close-up look at the future research directions have also been presented briefly.展开更多
One of the most exciting new developments in energy storage technology is flexible Zn-ion hybrid supercapacitors(f-ZIHSCs),which combine the high energy of Zn-ion batteries with high-power supercapacitors to satisfy t...One of the most exciting new developments in energy storage technology is flexible Zn-ion hybrid supercapacitors(f-ZIHSCs),which combine the high energy of Zn-ion batteries with high-power supercapacitors to satisfy the needs of portable flexible electronics.However,the development of f-ZHSCs is still in its infancy,and there are numerous barriers to overcome before they can be widely implemented for practical applications.This review gives an up-to-date description of recent achievements and underlying concepts in energy storage mechanisms of f-ZIHSCs and emphasizes the critical role of cathode,anode,and electrolyte materials systems in speeding the prosperity of f-ZIHSCs.The innovative nanostructured-based cathode materials for f-ZIHSCs include carbon(e.g.,porous carbon,heteroatom-doped carbon,biomass-derived porous carbon,graphene,etc.),metal-oxides,MXenes,and metal/covalentorganic frameworks,and other materials(e.g.,activated carbon,phosphorene,etc.)are mainly focused.Afterward,the latest developments in flexible anode and electrolyte frameworks and impacts of electrolyte compositions on the electrochemical properties of f-ZIHSC are elaborated.Subsequently,the advancements based on fabrication designs,including quasi-solid-state,micro,fiber-shaped,and all climate-changed f-ZIHSCs,are discussed in detail.Lastly,a summary of current challenges and recommendations for the future progress of advanced f-ZIHSC are addressed.This review article is anticipated to further understand the viable strategies and achievable approaches for assembling high-performance f-ZIHSCs and boost the technical revolutions on cathode,anode,and electrolytes for f-ZIHSC devices.展开更多
Oil and gas resources are short in Pakistan and no commercially viable oil and gas sources have been yet discovered in its offshore areas up to now.In this study,the onshore-offshore stratigraphic correlation and seis...Oil and gas resources are short in Pakistan and no commercially viable oil and gas sources have been yet discovered in its offshore areas up to now.In this study,the onshore-offshore stratigraphic correlation and seismic data interpretation were conducted to determine the oil and gas resource potential in the Offshore Indus Basin,Pakistan.Based on the comprehensive analysis of the results and previous data,it is considered that the Cretaceous may widely exist and three sets of source rocks may be developed in the Offshore Indus Basin.The presence of Miocene mudstones has been proven by drilling to be high-quality source rocks,while the Cretaceous and Paleocene–Eocene mudstones are potential source rocks.Tectonic-lithologic traps are developed in the northwestern part of the basin affected by the strike-slip faults along Murray Ridge.Furthermore,the Cretaceous and Paleocene–Eocene source rocks are thick and are slightly affected by volcanic activities.Therefore,it can be inferred that the northwestern part of Offshore Indus Basin enjoys good prospects of oil and gas resources.展开更多
Soils and ecosystems contaminated with cadmium (Cd) threaten human health and adversely affect morphological,physiological,and biochemical parameters of plants.The symbiotic association of endophytic fungi with their ...Soils and ecosystems contaminated with cadmium (Cd) threaten human health and adversely affect morphological,physiological,and biochemical parameters of plants.The symbiotic association of endophytic fungi with their host plants is the best strategy to improve various plant characteristics and remediate soils polluted with heavy metal(loid)s (HMs).Being a well-known plant growth-promoting fungus,Piriformospora indica confers resistance against a number of abiotic stresses,including HM stress.This pot experiment explored the potential and ameliorative effects of P.indica on Artemisia annua L.plants treated with different concentrations (0,40,80,and 120 mg kg-1) of Cd.Inoculation with P.indica significantly increased plant performance,especially by enhancing chlorophyll concentration and water potential and by decreasing electrolytic leakage,when compared with un-inoculated plants,despite the high Cd levels.Similarly,P.indica enhanced antioxidant enzyme activities,thereby reducing the drastic effects of Cd in inoculated plants.In addition,P.indica accumulated Cd in the roots of colonized plants,as revealed by atomic absorption spectroscopy,and restricted Cd translocation to aerial parts.Furthermore,P.indica showed in vitro resistance (up to a certain level) to Cd stress;however,fungus growth was inhibited at very high Cd concentrations,proving it an excellent candidate for use as a potential phytoremediator in fields affected by Cd contamination.The transcriptional analysis showed that the signaling genes and artemisinin and flavonoid biosynthetic pathway genes were significantly upregulated in P.indica-co-cultivated plants when compared with un-inoculated plants,suggesting a fine collaboration between primary and secondary metabolisms to modulate resistance capacity and to enhance the phytoremediation capability of A.annua against Cd toxicity.展开更多
Spinel ferrites have a significant role in high-tech applications.In the present work nano-crystalline ferrites having general formula Co0.5Cd0.5BixFe2-xO4 with(x=0.0,0.05,0.1,0.15,0.2,and 0.25)are synthesized via mic...Spinel ferrites have a significant role in high-tech applications.In the present work nano-crystalline ferrites having general formula Co0.5Cd0.5BixFe2-xO4 with(x=0.0,0.05,0.1,0.15,0.2,and 0.25)are synthesized via micro-emulsion route.Powder x-ray diffraction(XRD)studies discover the FCC spinel structure.Crystalline size is calculated in a range of 11 nm-15 nm.Lattice parameter calculations are reduced due to its substitution which leads to the exchange of large ionic radius of Fe^3+for small ionic radius of Bi^3+.The x-ray density is analyzed to increase with doping.Fourier transform infrared spectroscopy(FTIR)is performed to analyze absorption band spectra.The two absorption bands are observed in a range of 400 cm^-1-600 cm^-1,and they are the characteristic feature of spinel structure.Thermo-gravimetric analysis(TGA)reveals the total weight loss of nearly 1.98%.Dielectric analysis is carried out by impedance analyzer in a frequency span from 1 MHz to 3 GHz by using the Maxwell Wagner model.Dielectric studies reveal the decrease of dielectric parameters.The alternating current(AC)conductivity exhibits a plane behavior in a low frequency range and it increases with the applied frequency increasing.This is attributed to the grain effects in a high frequency range or may be due to the reduction of porosity.Real and imaginary part of impedance show the decreasing trend which corresponds to the grain boundary action.The imaginary modulus shows the occurrence of peak that helps to understand the interfacial polarization.Cole-Cole graph shows a single semicircle which confirms that the conduction mechanism is due to the grain boundaries at low frequency.Dielectric studies reveal the applicability of these ferrites in high frequency equipment,microwave applications,high storage media,and semiconductor devices.展开更多
Gold leaching was influenced in association with silver and polymetal sulphide minerals.A packed bed was adopted to single out the galvanic and passivation effects with four sets of minerals:pyrite?silica,chalcopyrite...Gold leaching was influenced in association with silver and polymetal sulphide minerals.A packed bed was adopted to single out the galvanic and passivation effects with four sets of minerals:pyrite?silica,chalcopyrite?silica,sphalerite?silica and stibnite?silica.Pyrargyrite enhanced Au recovery to 77.3%and 51.2%under galvanic and passivation effects from pyrite(vs 74.6%and 15.8%).Pyrargyrite in association with sphalerite also enhanced Au recovery to 6.6%and 51.9%(vs 1.6%and 15.6%)under galvanic and passivation effects from sphalerite.Pyrargyrite associated with chalcopyrite retarded gold recovery to 38.0%and 12.1%(vs 57%and 14.1%)under galvanic and passivation effects.Accumulative silver minerals enhanced Au recovery to 90.6%and 81.1%(vs 74.6%and 15.8%)under galvanic and passivation impacts from pyrite.Silver minerals with sphalerite under galvanic and passivation effects enhanced Au recovery to 71.1%and 80.5%(vs 1.6%and 15.6%).Silver minerals associated with chalcopyrite retarded Au recovery to 10.2%and 4.5%under galvanic and passivation impacts(vs 57%and 14.1%).Stibnite retarded Au dissolution with pyrargyrite and accumulative silver minerals.Pyrargyrite and accumulative silver enhanced gold dissolution for free gold and gold associated with pyrite and sphalerite.Gold dissolution was retarded for gold and silver minerals associated with chalcopyrite and stibnite.展开更多
Surface properties of SiC power devices mostly depend on the passivation layer(PL).This layer has direct influence on electrical characteristics of devices.2D numerical simulation of forward and reverse characteristic...Surface properties of SiC power devices mostly depend on the passivation layer(PL).This layer has direct influence on electrical characteristics of devices.2D numerical simulation of forward and reverse characteristics with and without different(PLs)(SiO2,HfO2 and Si3N4) has been performed.Simulation results show that the breakdown voltage increases with increasing PL thickness,and there is a lesser significant effect on forward characteristics.The maximum breakdown voltage with and without SiO2 PL is 1240 V and 276 V,respectively.SiO2 PL has compatibility with SiC surface providing high breakdown voltage,6 and 8% higher than that of HfO2 and Si3N4 respectively.Low leakage current is observed which then further decreases on reducing the thickness of PL.Furthermore,variation of forward current with dielectric constant and thickness of PLs was observed.Finally,it is suggested that matches of our results with published experimental results indicate that the Sentaurus TCAD simulator is a predictive tool for the SiC Schottky barrier diode simulation.展开更多
Electron acoustic(EA)solitary waves(SWs)are studied in an unmagnetized plasma consisting of hot electrons(following Cairns-Tsalli distribution),inertial cold electrons,and stationary ions.By employing a reductive pert...Electron acoustic(EA)solitary waves(SWs)are studied in an unmagnetized plasma consisting of hot electrons(following Cairns-Tsalli distribution),inertial cold electrons,and stationary ions.By employing a reductive perturbation technique(RPT),the nonlinear Korteweg–de Vries(KdV)equation is derived and its SW solution is analyzed.Here,the effects of plasma parameters such as the nonextensivity parameter(q),the nonthermality of electrons(α),and the cold-to-hot electron density ratio(β)are investigated.展开更多
Theoretical investigation of nonlinear electrostatic ion-acoustic cnoidal waves(IACWs) is presented in magnetized electron–positron–ion plasma with nonextensive electrons and Maxwellian positrons. Using reductive pe...Theoretical investigation of nonlinear electrostatic ion-acoustic cnoidal waves(IACWs) is presented in magnetized electron–positron–ion plasma with nonextensive electrons and Maxwellian positrons. Using reductive perturbation technique, Korteweg–de Vries equation is derived and its cnoidal wave solution is analyzed. For given plasma parameters, our model supports only positive potential(compressive) IACW structures. The effect of relevant plasma parameters(viz., nonextensive parameter q, positron concentration p, temperature ratio σ,obliqueness l3) on the characteristics of IACWs is discussed in detail.展开更多
Neighborhood gardens serve as sensitive sites for human microbial encounters,with phyllosphere microbes directly impacting our respiratory health.Yet,our understanding remains limited on how factors like season,garden...Neighborhood gardens serve as sensitive sites for human microbial encounters,with phyllosphere microbes directly impacting our respiratory health.Yet,our understanding remains limited on how factors like season,garden age,and land use shape the risk of respiratory diseases(RDs)tied to these garden microbes.Here we examined the microbial communities within the phyllosphere of 72 neighborhood gardens across Shanghai,spanning different seasons(warm and cold),garden ages(old and young),and locales(urban and rural).We found a reduced microbial diversity during the cold season,except for Gammaproteobacteria which exhibited an inverse trend.While land use influenced the microbial composition,urban and rural gardens had strikingly similar microbial profiles.Alarmingly,young gardens in the cold season hosted a substantial proportion of RDs-associated species,pointing towards increased respiratory inflammation risks.In essence,while newer gardens during colder periods show a decline in microbial diversity,they have an increased presence of RDs-associated microbes,potentially escalating respiratory disease prevalence.This underscores the pivotal role the garden age plays in enhancing both urban microbial diversity and respiratory health.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51772080 and 11604088)the Funding from Science and Technology Department of Jiangsu Province,China(No.BE2022029)+1 种基金the Beijing Natural Science Foundation,China(No.IS23050)Prof.Asghar also thanks the Academy of Finland(Nos.13322738 and 13352669)for the financial support.
文摘Developing high ionic conducting electrolytes is crucial for applying proton-conducting fuel cell(PCFCs)practically.The cur-rent study investigates the effect of alumina on the structural,morphological,electrical,and electrochemical properties of CeO_(2).Lattice oxygen vacancies are induced in CeO_(2) by a general doping concept that enables fast ionic conduction at low-temperature ranges(300-500℃)for PCFCs.Rietveld refinement of the X-ray diffraction(XRD)patterns established the pure cubic fluorite structure of Al-doped CeO_(2)(ADC)samples and confirmed Al ions’fruitful integration in the CeO_(2) lattice.The electronic structure of the alumina-doped ceria of the materials(10ADC,20ADC,and 30ADC)has been investigated.As a result,it was found that the best composition of 30ADC-based electrolytes induced maximum lattice oxygen vacancies.The corresponding PCFC exhibited a maximum power output of 923 mW/cm^(2)at 500℃.Moreover,the investigation proves the proton-conducting ability of alumina-doped ceria-based fuel cells by using an oxide ion-blocking layer.
文摘Locally Advance Breast Cancer refers to a heterogeneous group of breast cancer with locally extensive disease, which may or may not involve the nodes, without any distant metastases. The study was conducted at Faisalabad Medical University (FMU), Oncology, Allied Hospital Faisalabad (Pakistan). Data of 100 patients with LABC was collected. Demographics were recorded in the form of age, socio-economic status. In clinical data, time of presentation, family history of breast cancer, the presenting symptom in the form of lump, ulceration and other skin changes were noted. Histo-pathological variables including tumor size, histopathology, Bloom & Richardson grading, estrogen receptor (ER), progesterone receptor status (PR) and HER2 status. Results showed that after following a standard trimodality treatment approach in LABC patients, 30 percent died within two years. Disease free survival for more than two years was observed in only 25% of patients. Whereas, 70% patients had eventful (Recurrence/metastases) survival. This poor outcome was observed due to lack of health care facilities, awareness and poor socioeconomic status.
基金This work was supported by the National Key Research and Development Program of China(No.2016YFD-0800807)the National Nature Science Foundation of China(Nos.31702003 and 31902105)+3 种基金the Young Elite Scientists Sponsorship Program of China Association for Science and Technology(CAST)(No.2017QNRC001)the China Postdoctoral Science Foundation(No.2019 M651505)the“Chenguang Program”of the Shanghai Education Development Foundation and Shanghai Municipal Education Commission,China(No.17CG07)the Shanghai Agriculture Science and Technology Development Project,China(No.2018-4-13).
文摘Trace metals such as manganese(Mn),copper(Cu),zinc(Zn),and iron(Fe)are essential for many biological processes in plant life cycles.However,in excess,they can be toxic and disrupt plant growth processes,which is economically undesirable for crop production.For this reason,processes such as homeostasis and transport control of these trace metals are of constant interest to scientists studying heavily contaminated habitats.Phytoremediation is a promising cleanup technology for soils polluted with heavy metals.However,this technique has some disadvantages,such as the slow growth rate of metal-accumulating plant species,low bioavailability of heavy metals,and long duration of remediation.Microbial-assisted phytoremediation is a promising strategy for hyperaccumulating,detoxifying,or remediating soil contaminants.Arbuscular mycorrhizal fungi(AMF)are found in association with almost all plants,contributing to their healthy performance and providing resistance against environmental stresses.They colonize plant roots and extend their hyphae to the rhizosphere region,assisting in mineral nutrient uptake and regulation of heavy metal acquisition.Endophytic fungi exist in every healthy plant tissue and provide enormous services to their host plants,including growth enhancement by nutrient acquisition,detoxification of heavy metals,secondary metabolite regulation,and enhancement of abiotic/biotic stress tolerance.The aim of the present work is to review the recent literature regarding the role of AMF and endophytic fungi in plant heavy metal tolerance in terms of its regulation in highly contaminated conditions.
基金supported by the National High-Tech R&D Program of China (863 Program,2013AA103000)the earmarked fund for Shanghai Modern Leaf Vegetable Industry Technology Research System,China (201802)
文摘Flavonoids are widely-distributed polyphenolic secondary metabolites with diverse biological activities in plants and benefit human health as protective dietary agents.They participate in plants' responses to harsh environmental conditions and effectively regulate the cell differentiation and growth.In plants,the majority of their functions are attributed to their strong antioxidative properties.Similarly,dietary flavonoids protect the human body against free radicals which are associated with the development of cancer and atherosclerosis.Plants rich in polyphenols have been used to cure various diseases because of their antibacterial,antiviral,antifungal and anticancer properties.This review summarizes the up-to-date research trends and development on flavonoids and its derivatives,working mechanisms and potential functions and applications particularly in relation to plant protection and human health.Towards the end,notable concluding remarks with a close-up look at the future research directions have also been presented briefly.
基金supported by the Research Fund for International Scientists(52250410342)Scientific Research start-up grant for Youth Researchers at Lanzhou University,the National Natural Science Foundation of China(51972153)the Fundamental Research Funds for the Central Universities(lzujbky-2021-sp64)and Supercomputing Center of Lanzhou University.
文摘One of the most exciting new developments in energy storage technology is flexible Zn-ion hybrid supercapacitors(f-ZIHSCs),which combine the high energy of Zn-ion batteries with high-power supercapacitors to satisfy the needs of portable flexible electronics.However,the development of f-ZHSCs is still in its infancy,and there are numerous barriers to overcome before they can be widely implemented for practical applications.This review gives an up-to-date description of recent achievements and underlying concepts in energy storage mechanisms of f-ZIHSCs and emphasizes the critical role of cathode,anode,and electrolyte materials systems in speeding the prosperity of f-ZIHSCs.The innovative nanostructured-based cathode materials for f-ZIHSCs include carbon(e.g.,porous carbon,heteroatom-doped carbon,biomass-derived porous carbon,graphene,etc.),metal-oxides,MXenes,and metal/covalentorganic frameworks,and other materials(e.g.,activated carbon,phosphorene,etc.)are mainly focused.Afterward,the latest developments in flexible anode and electrolyte frameworks and impacts of electrolyte compositions on the electrochemical properties of f-ZIHSC are elaborated.Subsequently,the advancements based on fabrication designs,including quasi-solid-state,micro,fiber-shaped,and all climate-changed f-ZIHSCs,are discussed in detail.Lastly,a summary of current challenges and recommendations for the future progress of advanced f-ZIHSC are addressed.This review article is anticipated to further understand the viable strategies and achievable approaches for assembling high-performance f-ZIHSCs and boost the technical revolutions on cathode,anode,and electrolytes for f-ZIHSC devices.
基金This work was financially supported by National Natural Science Foundation of China(91858208,41406080,42076069)China Geological Survey(DD20190581).
文摘Oil and gas resources are short in Pakistan and no commercially viable oil and gas sources have been yet discovered in its offshore areas up to now.In this study,the onshore-offshore stratigraphic correlation and seismic data interpretation were conducted to determine the oil and gas resource potential in the Offshore Indus Basin,Pakistan.Based on the comprehensive analysis of the results and previous data,it is considered that the Cretaceous may widely exist and three sets of source rocks may be developed in the Offshore Indus Basin.The presence of Miocene mudstones has been proven by drilling to be high-quality source rocks,while the Cretaceous and Paleocene–Eocene mudstones are potential source rocks.Tectonic-lithologic traps are developed in the northwestern part of the basin affected by the strike-slip faults along Murray Ridge.Furthermore,the Cretaceous and Paleocene–Eocene source rocks are thick and are slightly affected by volcanic activities.Therefore,it can be inferred that the northwestern part of Offshore Indus Basin enjoys good prospects of oil and gas resources.
基金the School of Agriculture and Biology, Shanghai Jiao Tong University, China for providing financial support and experimental facilities。
文摘Soils and ecosystems contaminated with cadmium (Cd) threaten human health and adversely affect morphological,physiological,and biochemical parameters of plants.The symbiotic association of endophytic fungi with their host plants is the best strategy to improve various plant characteristics and remediate soils polluted with heavy metal(loid)s (HMs).Being a well-known plant growth-promoting fungus,Piriformospora indica confers resistance against a number of abiotic stresses,including HM stress.This pot experiment explored the potential and ameliorative effects of P.indica on Artemisia annua L.plants treated with different concentrations (0,40,80,and 120 mg kg-1) of Cd.Inoculation with P.indica significantly increased plant performance,especially by enhancing chlorophyll concentration and water potential and by decreasing electrolytic leakage,when compared with un-inoculated plants,despite the high Cd levels.Similarly,P.indica enhanced antioxidant enzyme activities,thereby reducing the drastic effects of Cd in inoculated plants.In addition,P.indica accumulated Cd in the roots of colonized plants,as revealed by atomic absorption spectroscopy,and restricted Cd translocation to aerial parts.Furthermore,P.indica showed in vitro resistance (up to a certain level) to Cd stress;however,fungus growth was inhibited at very high Cd concentrations,proving it an excellent candidate for use as a potential phytoremediator in fields affected by Cd contamination.The transcriptional analysis showed that the signaling genes and artemisinin and flavonoid biosynthetic pathway genes were significantly upregulated in P.indica-co-cultivated plants when compared with un-inoculated plants,suggesting a fine collaboration between primary and secondary metabolisms to modulate resistance capacity and to enhance the phytoremediation capability of A.annua against Cd toxicity.
基金the ORIC of Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS) Quetta-PK, for help and financial support to accomplish this research work in the Department of Physics
文摘Spinel ferrites have a significant role in high-tech applications.In the present work nano-crystalline ferrites having general formula Co0.5Cd0.5BixFe2-xO4 with(x=0.0,0.05,0.1,0.15,0.2,and 0.25)are synthesized via micro-emulsion route.Powder x-ray diffraction(XRD)studies discover the FCC spinel structure.Crystalline size is calculated in a range of 11 nm-15 nm.Lattice parameter calculations are reduced due to its substitution which leads to the exchange of large ionic radius of Fe^3+for small ionic radius of Bi^3+.The x-ray density is analyzed to increase with doping.Fourier transform infrared spectroscopy(FTIR)is performed to analyze absorption band spectra.The two absorption bands are observed in a range of 400 cm^-1-600 cm^-1,and they are the characteristic feature of spinel structure.Thermo-gravimetric analysis(TGA)reveals the total weight loss of nearly 1.98%.Dielectric analysis is carried out by impedance analyzer in a frequency span from 1 MHz to 3 GHz by using the Maxwell Wagner model.Dielectric studies reveal the decrease of dielectric parameters.The alternating current(AC)conductivity exhibits a plane behavior in a low frequency range and it increases with the applied frequency increasing.This is attributed to the grain effects in a high frequency range or may be due to the reduction of porosity.Real and imaginary part of impedance show the decreasing trend which corresponds to the grain boundary action.The imaginary modulus shows the occurrence of peak that helps to understand the interfacial polarization.Cole-Cole graph shows a single semicircle which confirms that the conduction mechanism is due to the grain boundaries at low frequency.Dielectric studies reveal the applicability of these ferrites in high frequency equipment,microwave applications,high storage media,and semiconductor devices.
基金Financial support from the Natural Sciences and Engineering Research Council through its Cooperative Research & Development grants program
文摘Gold leaching was influenced in association with silver and polymetal sulphide minerals.A packed bed was adopted to single out the galvanic and passivation effects with four sets of minerals:pyrite?silica,chalcopyrite?silica,sphalerite?silica and stibnite?silica.Pyrargyrite enhanced Au recovery to 77.3%and 51.2%under galvanic and passivation effects from pyrite(vs 74.6%and 15.8%).Pyrargyrite in association with sphalerite also enhanced Au recovery to 6.6%and 51.9%(vs 1.6%and 15.6%)under galvanic and passivation effects from sphalerite.Pyrargyrite associated with chalcopyrite retarded gold recovery to 38.0%and 12.1%(vs 57%and 14.1%)under galvanic and passivation effects.Accumulative silver minerals enhanced Au recovery to 90.6%and 81.1%(vs 74.6%and 15.8%)under galvanic and passivation impacts from pyrite.Silver minerals with sphalerite under galvanic and passivation effects enhanced Au recovery to 71.1%and 80.5%(vs 1.6%and 15.6%).Silver minerals associated with chalcopyrite retarded Au recovery to 10.2%and 4.5%under galvanic and passivation impacts(vs 57%and 14.1%).Stibnite retarded Au dissolution with pyrargyrite and accumulative silver minerals.Pyrargyrite and accumulative silver enhanced gold dissolution for free gold and gold associated with pyrite and sphalerite.Gold dissolution was retarded for gold and silver minerals associated with chalcopyrite and stibnite.
基金the Higher Education Commission of Pakistan for providing financial support as indigenous scholarship Batch-IV
文摘Surface properties of SiC power devices mostly depend on the passivation layer(PL).This layer has direct influence on electrical characteristics of devices.2D numerical simulation of forward and reverse characteristics with and without different(PLs)(SiO2,HfO2 and Si3N4) has been performed.Simulation results show that the breakdown voltage increases with increasing PL thickness,and there is a lesser significant effect on forward characteristics.The maximum breakdown voltage with and without SiO2 PL is 1240 V and 276 V,respectively.SiO2 PL has compatibility with SiC surface providing high breakdown voltage,6 and 8% higher than that of HfO2 and Si3N4 respectively.Low leakage current is observed which then further decreases on reducing the thickness of PL.Furthermore,variation of forward current with dielectric constant and thickness of PLs was observed.Finally,it is suggested that matches of our results with published experimental results indicate that the Sentaurus TCAD simulator is a predictive tool for the SiC Schottky barrier diode simulation.
文摘Electron acoustic(EA)solitary waves(SWs)are studied in an unmagnetized plasma consisting of hot electrons(following Cairns-Tsalli distribution),inertial cold electrons,and stationary ions.By employing a reductive perturbation technique(RPT),the nonlinear Korteweg–de Vries(KdV)equation is derived and its SW solution is analyzed.Here,the effects of plasma parameters such as the nonextensivity parameter(q),the nonthermality of electrons(α),and the cold-to-hot electron density ratio(β)are investigated.
文摘Theoretical investigation of nonlinear electrostatic ion-acoustic cnoidal waves(IACWs) is presented in magnetized electron–positron–ion plasma with nonextensive electrons and Maxwellian positrons. Using reductive perturbation technique, Korteweg–de Vries equation is derived and its cnoidal wave solution is analyzed. For given plasma parameters, our model supports only positive potential(compressive) IACW structures. The effect of relevant plasma parameters(viz., nonextensive parameter q, positron concentration p, temperature ratio σ,obliqueness l3) on the characteristics of IACWs is discussed in detail.
基金supported by the Natural Science Foundation of China(Project number:32371843)the Science and Technology Commission of Shanghai Municipality(Project number:22230713300).
文摘Neighborhood gardens serve as sensitive sites for human microbial encounters,with phyllosphere microbes directly impacting our respiratory health.Yet,our understanding remains limited on how factors like season,garden age,and land use shape the risk of respiratory diseases(RDs)tied to these garden microbes.Here we examined the microbial communities within the phyllosphere of 72 neighborhood gardens across Shanghai,spanning different seasons(warm and cold),garden ages(old and young),and locales(urban and rural).We found a reduced microbial diversity during the cold season,except for Gammaproteobacteria which exhibited an inverse trend.While land use influenced the microbial composition,urban and rural gardens had strikingly similar microbial profiles.Alarmingly,young gardens in the cold season hosted a substantial proportion of RDs-associated species,pointing towards increased respiratory inflammation risks.In essence,while newer gardens during colder periods show a decline in microbial diversity,they have an increased presence of RDs-associated microbes,potentially escalating respiratory disease prevalence.This underscores the pivotal role the garden age plays in enhancing both urban microbial diversity and respiratory health.