Sustainability of traditionally cultivated rice in the rice-wheat cropping zone(RWCZ)of Pakistan is dwindling due to the high cost of production,declining water resources and escalating labour availability.Thus,farmer...Sustainability of traditionally cultivated rice in the rice-wheat cropping zone(RWCZ)of Pakistan is dwindling due to the high cost of production,declining water resources and escalating labour availability.Thus,farmers and researchers are compelled to find promising alternatives to traditional transplanted rice(TPR).A field study was conducted in Punjab,Pakistan,in 2017 and 2018 to explore the trade-offs between water saving and paddy yield,water productivity and economics of two aromatic rice varieties under dry direct seeded rice(DDSR)and TPR.The experiment was comprised of three irrigation regimes on the basis of soil moisture tension(SMT)viz.,continuous flooded(>–10 kPa SMT),alternate wetting and drying(AWD)(–20 kPa SMT)and aerobic rice(–40 kPa SMT),maintained under TPR and DDSR systems.Two aromatic rice verities:Basmati-515 and Chenab Basmati-2016 were used during both years of study.In both years,DDSR produced higher yields(13–18%)and reduced the total water inputs(8–12%)in comparison to TPR.In comparison to traditional continuous flooded(CF),AWD under DDSR reduced total water input by 27–29%and improved the leaf area index(LAI),tillering,yield(7–9%),and water productivity(44–50%).The performance of AWD with regard to water savings and increased productivity was much higher in DDSR system as compared to AWD in TPR system.Cultivation of DDSR with aerobic irrigation improved water savings(49–55%)and water productivity(22–30%)at the expense of paddy yield reduction(36–39%)and spikelet sterility.With regard to variety,the highest paddy yield(6.6 and 6.7 t ha–1)was recorded in DDSR using Chenab Basmati-2016 under AWD irrigation threshold that attributed to high tiller density and LAI.The economic analysis showed DDSR as more beneficial rice establishment method than TPR with a high benefit-cost ratio(BCR)when the crop was irrigated with AWD irrigation threshold.Our results highlighted that with the use of short duration varieties,DDSR cultivation in conjunction with AWD irrigation can be more beneficial for higher productivity and crop yield.展开更多
Image enhancement is a monumental task in the field of computer vision and image processing.Existing methods are insufficient for preserving naturalness and minimizing noise in images.This article discusses a techniqu...Image enhancement is a monumental task in the field of computer vision and image processing.Existing methods are insufficient for preserving naturalness and minimizing noise in images.This article discusses a technique that is based on wavelets for optimizing images taken in low-light.First,the V channel is created by mapping an image’s RGB channel to the HSV color space.Second,the acquired V channel is decomposed using the dual-tree complex wavelet transform(DT-CWT)in order to recover the concentrated information within its high and low-frequency subbands.Thirdly,an adaptive illumination boost technique is used to enhance the visibility of a low-frequency component.Simultaneously,anisotropic diffusion is used to mitigate the high-frequency component’s noise impact.To improve the results,the image is reconstructed using an inverse DT-CWT and then converted to RGB space using the newly calculated V.Additionally,images are white-balanced to remove color casts.Experiments demonstrate that the proposed approach significantly improves outcomes and outperforms previously reported methods in general.展开更多
Continuously changing climate and availability of different rice genotypes make it necessary to find optimum time of sowing as well as suitable variety for cultivation to get maximum productivity under a specific set ...Continuously changing climate and availability of different rice genotypes make it necessary to find optimum time of sowing as well as suitable variety for cultivation to get maximum productivity under a specific set of climatic conditions. A field study was carried out to search out the suitable rice transplanting time for four different coarse genotypes under the semi-arid environment of Faisalabad. The experiment was conducted at Agronomic Research Area, University of Agriculture, Faisalabad and was laid out in randomized complete block design (RCBD) with split plot arrangement keeping transplanting time in main plots while rice genotypes in subplots. Variability among treatments was measured by Fisher’s ANOVA (P ≤ 5%) and LSD test was applied to compare the differences among treatments’ means. The ANOVA indicated statistically significant differences among genotypes as well as transplanting dates irrespective of all studied traits while interactive effects of both were found to be non-significant. NIBGE-1 performed best with maximum paddy yield of 6.05 t/ha while KSK-434 performed poor with paddy yield of 2.78 t/ha. Increased paddy yield and yield related parameters of all rice genotypes were recorded where transplantation was done on 25th of June. Generally, paddy yield decreased with delaying the transplanting time. The results suggested that NIBGE-1 can perform better under the semi-arid conditions of Faisalabad and last week of June might be the optimum time for nursery transplantation. It can also be further elucidated that late transplanting causes yield reduction which could not be recommended among farmers.展开更多
Object detection in images has been identified as a critical area of research in computer vision image processing.Research has developed several novel methods for determining an object’s location and category from an...Object detection in images has been identified as a critical area of research in computer vision image processing.Research has developed several novel methods for determining an object’s location and category from an image.However,there is still room for improvement in terms of detection effi-ciency.This study aims to develop a technique for detecting objects in images.To enhance overall detection performance,we considered object detection a two-fold problem,including localization and classification.The proposed method generates class-independent,high-quality,and precise proposals using an agglomerative clustering technique.We then combine these proposals with the relevant input image to train our network on convolutional features.Next,a network refinement module decreases the quantity of generated proposals to produce fewer high-quality candidate proposals.Finally,revised candidate proposals are sent into the network’s detection process to determine the object type.The algorithm’s performance is evaluated using publicly available the PASCAL Visual Object Classes Challenge 2007(VOC2007),VOC2012,and Microsoft Common Objects in Context(MS-COCO)datasets.Using only 100 proposals per image at intersection over union((IoU)=0.5 and 0.7),the proposed method attains Detection Recall(DR)rates of(93.17%and 79.35%)and(69.4%and 58.35%),and Mean Average Best Overlap(MABO)values of(79.25%and 62.65%),for the VOC2007 and MS-COCO datasets,respectively.Besides,it achieves a Mean Average Precision(mAP)of(84.7%and 81.5%)on both VOC datasets.The experiment findings reveal that our method exceeds previous approaches in terms of overall detection performance,proving its effectiveness.展开更多
Orbital angular momentum(OAM)technology,refers to Laguerre-Gaussian(LG)beams,twisted beams,vector/vortex beams,acoustic vortex beams and fractional vortex beams.It is an emerging and promising technology to improve th...Orbital angular momentum(OAM)technology,refers to Laguerre-Gaussian(LG)beams,twisted beams,vector/vortex beams,acoustic vortex beams and fractional vortex beams.It is an emerging and promising technology to improve the communication capacity,spectral efficiency,and anti-jamming capability due to its helical phase fronts and infinite orthogonal states.Although the OAM research began in the 1990s,the developing trends,current status,issues and characteristics through a systematic observation have not yet been performed.This paper presents a knowledge-based evolution of OAM research published in the Web of Science(WoS)from 2011 to 2021 using bibliometric analysis in Citepspace.The results demonstrate that the bandwidth,efficiency,gain,divergence,phase quantization,bulky and complex feeding structures,misalignment,distortion,interferences atmospheric turbulence and diffraction were the key issues found in the OAM technology.The main research hotspots and categories,influential authors,leading journals,best institutions of OAM show a strong bias in favor of their functions and technology developments.The research on OAM was mainly performed by the counties that have developed the 5G and now moving towards 6G communications like China,USA and South Korea.This study would serve as an inclusive guide on the future research trends and status especially for the OAM researchers.展开更多
The aim of the present study was to investigate minimum inhibitory concentration(MIC)distributions by broth microdilution(BMD)method and to determine the preliminary epidemiological cut-off value(ECV)of colistin by ep...The aim of the present study was to investigate minimum inhibitory concentration(MIC)distributions by broth microdilution(BMD)method and to determine the preliminary epidemiological cut-off value(ECV)of colistin by epidemiological cut-off(ECOFF)finder against E.coli from chickens in China.Anal swabs were collected from chicken farms in China.BMD method was used to measure MIC50 and MIC90 of colistin which were 2 and 4μg•mL^(-1),respectively.MIC frequency distributions for colistin were used to estimate preliminary ECV(8μg•mL^(-1)).High percentages of resistance to ampicillin(94.12%),nalidixic acid(94.12%),enrofloxacin(94.12%),tetracycline(94.12%),ciprofloxacin(88.24%),florfenicol(88.24%),neomycin(64.71%),gentamicin(58.82%),levofloxacin(58.82%),doxycycline(88.24%)and cefalexin(76.47%)were found.In addition,low percentages of resistance to amikacin(5.88%),spectinomycin(17.65%)and fosfomycin(41.18%)were noted.Notably,amoxicillin,sulfisoxazole and trimethoprim resulted in a 100%resistance generation efficacy rate.Prevalence of mcr-1 in E.coli(9/17)in chromosomal DNA was higher than mcr-4(2/17)gene,and mcr-1(5/17)was higher than mcr-4(3/17)in plasmid.展开更多
Peral millet being drought tolerant has substantial potential to contribute in food security ensuring the food, fodder and nutritional value in different Asian and African countries. Susceptibility to abiotic and biot...Peral millet being drought tolerant has substantial potential to contribute in food security ensuring the food, fodder and nutritional value in different Asian and African countries. Susceptibility to abiotic and biotic factors and low productivity are the main reasons for decreasing productivity and area of millets. In this context, evaluation of the effect of weed control practices and varying sowing dates on grain yield of kharif season grown pearl millet (Pennisetum americanum L.) was demonstrated at post graduate agriculture research station, University of Agriculture, Faisalabad during 2015. Forage pearl millet was sown at three different sowing dates i.e. mid-June, end of June and mid-July and four weed control practices viz. weedy check (no weeding), twice hoeing at 15 and 30 days after sowing (DAS), weed control using herbicides i.e. application of Atrazine (Awax 38 SC) @330 g a.i. ha-1 at 15 DAS, and twice foliar applications of 10% Sorghum water extract (Sorgaab) (at 15 and 30 DAS). The experiment was laid out in randomized complete block design (RCBD) under split plot arrangement, comprising of three replications. The treatments with varying sowing dates were randomized in main plots and weed control practices were in subplots. Results showed that the highest plant height (279.51 cm), leaf area (2777.80 cm2), fresh weight of leaves per plant (155.57 g), maximum number of grains per head (3162.0) and grain yield (3419.7 kg·ha-1) were obtained in the treatment combination of 30th June sowing × twice weed hoeing (at 15 and 30 DAS) while, maximum 1000-grain weight (8.45 g) was observed in treatments where weeds were controlled by hoeing (at 15 and 30 DAS). Moreover, cultural weed control practices reduce significantly weed density, fresh and dry Wight of weeds. In sum, it is concluded that to reduce the weed-crop competition and to gain higher productivity of pearl millet, field should be weed free 20 - 45 days after sowing.展开更多
The research screening of adoptive elite tea clones was conducted at NTRI, Mansehra during 2011-2012. Nine clones 101Aa, 105aa, 108aa, 561aa, ll7aa, 219ab, 470bb and 180bd were evaluated for seedling performance. Rand...The research screening of adoptive elite tea clones was conducted at NTRI, Mansehra during 2011-2012. Nine clones 101Aa, 105aa, 108aa, 561aa, ll7aa, 219ab, 470bb and 180bd were evaluated for seedling performance. Randomized complete block design was used with three replications. Data was recorded on various morphological characters after 8 months. The results showed that high survival percentage, shoot length, number of roots plant-1, number of leaves plant1 and root length were observed in clone 105aa. While the highest fresh weight and dry weight of leaves were observed in clones 117aa and 105aa. The clone 105aa was drought resistant, high survival percentage and root growth. On the basis of the results, clone 105aa was recommended for cultivation through cuttings in the hilly areas of Pakistan where unequal rainfall distribution was a major hitch.展开更多
Crop production is greatly influenced by water and nutrition stress in semi-arid areas. Nitrogen and water are two most important yield limiting factors which effect economic production of wheat. Drought initiates whe...Crop production is greatly influenced by water and nutrition stress in semi-arid areas. Nitrogen and water are two most important yield limiting factors which effect economic production of wheat. Drought initiates when large area of land suffers from absence of precipitation for temporary periods. Though, not only water scarceness but also low relative humidity and high temperature are other climate factors which induce drought condition. Whereas Effective nutrition (nitrogen) maintains crops metabolic activities and has the potential to lessen drought stress. According to study carried out to explore the influence of varying levels of potential soil moisture deficit (PSMD) and nitrogen, an experiment was planned at agronomy research area, University of Agriculture, Faisalabad. It was laid out in randomized complete block design (RCBD) with split plot arrangement, and replicated thrice. Two factors: potential soil moisture deficit levels (I1: irrigation at 50 mm PSMD, I2: irrigation at 75 mm PSMD and I3: irrigation at 100 mm PSMD) were randomized in main plots, while sub plot nitrogen levels {control (No nitrogen), 50, 100 and 150 kg N ha-1} were randomized. Adequate nitrogen application along with sufficient irrigation management gave highest yield. Under water deficit conditions adequate nitrogen application ameliorates the drought stress. Highest plant height (86.27 cm), number of productive tillers (320.0), grain·spike-1(49.73), test weight (50.55 g) and grain yield (6.72 t·ha-1) were observed with 75 mm PSMD and 150 kg·ha-1 application of nitrogen. While radiation use efficiency for dry matter accumulation of wheat ranged from 1.53 - 1.87 g·MJ-1 whereas, radiation use efficiency for grain yield ranged from 0.421 - 0.473 g·MJ-1. Results revealed that highest RUE obtained I3 (75 mm PSMD) and nitrogen application at 150 kg·ha-1. Judicial application of irrigation and fertilizer not only boosts the yield but also saves resource and increases former output.展开更多
A 3D-printed dual-band dual-polarization gap waveguide(GWG)slot antenna array is presented for Ku-band satellite communications(SATCOMs)in this paper.Two stacked GWGs excite the quasi-TE420 and quasi-TE240 modes in th...A 3D-printed dual-band dual-polarization gap waveguide(GWG)slot antenna array is presented for Ku-band satellite communications(SATCOMs)in this paper.Two stacked GWGs excite the quasi-TE420 and quasi-TE240 modes in the cavity separately through orthogonal slots.An unequal power divider with a large power division ratio is proposed based on a ridge gap waveguide(RGW).Two power tapering distribution networks are realized for dual polarizations,and the sidelobe level(SLL)is suppressed.The antenna is fabricated in parts by direct metal laser sintering(DMLS),and the whole antenna is obtained by screw assembly.The measured impedance bandwidth well covers both the transmitting band(Tx,from 14.0 GHz to 14.5 GHz)and the receiving band(Rx,from 12.25 GHz to 12.75 GHz)required for Ku-band SATCOMs.Measurement results show that the maximum gain reaches 25.6 dBi,and that the radiation efficiency of the dual-band is>72%.展开更多
Highly reliable and flexible control is required for distributed generation(DG) to efficiently connect to the grid.Smart inverters play a key role in the control and integration of DG into the power grid and provide a...Highly reliable and flexible control is required for distributed generation(DG) to efficiently connect to the grid.Smart inverters play a key role in the control and integration of DG into the power grid and provide advanced functionalities. In this paper, an energy-based single-phase voltage-source smart inverter(SPV-SSI) of 5 k VA is designed and analyzed in detail. SPV-SSI is capable of supplying the power to local load and the utility load up to the rated capacity of the inverter, injecting the power into the grid, storing the energy in lead-acid battery bank, controlling the voltage at the point of common coupling(PCC) during voltage sags or faults, and making decisions on real-time pricing information obtained from the utility grid through advanced metering. The complete design of smart inverter in dq frame, bi-directional DC-DC buck-boost converter, IEEE standard 1547 based islanding and recloser, and static synchronous compensator(STATCOM) functionalities is presented in this paper. Moreover, adaptive controllers, i. e., fuzzy proportional-integral(F-PI) controller and fuzzy-sliding mode controller(F-SMC) are designed. The performances of F-PI controller and F-SMC are superior, stable, and robust compared with those of conventionally tuned PI controllers for voltage control loop(islanded mode) and current control loop(grid-connected mode).展开更多
The authors regret 1.Address“Key Laboratory of Dairy Science(Northeast Agriculture University),Ministry of Education,Harbin,150030,PR China”is changed as“Key Laboratory of Dairy Science,Ministry of Education,Northe...The authors regret 1.Address“Key Laboratory of Dairy Science(Northeast Agriculture University),Ministry of Education,Harbin,150030,PR China”is changed as“Key Laboratory of Dairy Science,Ministry of Education,Northeast Agricultural University,Harbin,150030,PR China”.展开更多
文摘Sustainability of traditionally cultivated rice in the rice-wheat cropping zone(RWCZ)of Pakistan is dwindling due to the high cost of production,declining water resources and escalating labour availability.Thus,farmers and researchers are compelled to find promising alternatives to traditional transplanted rice(TPR).A field study was conducted in Punjab,Pakistan,in 2017 and 2018 to explore the trade-offs between water saving and paddy yield,water productivity and economics of two aromatic rice varieties under dry direct seeded rice(DDSR)and TPR.The experiment was comprised of three irrigation regimes on the basis of soil moisture tension(SMT)viz.,continuous flooded(>–10 kPa SMT),alternate wetting and drying(AWD)(–20 kPa SMT)and aerobic rice(–40 kPa SMT),maintained under TPR and DDSR systems.Two aromatic rice verities:Basmati-515 and Chenab Basmati-2016 were used during both years of study.In both years,DDSR produced higher yields(13–18%)and reduced the total water inputs(8–12%)in comparison to TPR.In comparison to traditional continuous flooded(CF),AWD under DDSR reduced total water input by 27–29%and improved the leaf area index(LAI),tillering,yield(7–9%),and water productivity(44–50%).The performance of AWD with regard to water savings and increased productivity was much higher in DDSR system as compared to AWD in TPR system.Cultivation of DDSR with aerobic irrigation improved water savings(49–55%)and water productivity(22–30%)at the expense of paddy yield reduction(36–39%)and spikelet sterility.With regard to variety,the highest paddy yield(6.6 and 6.7 t ha–1)was recorded in DDSR using Chenab Basmati-2016 under AWD irrigation threshold that attributed to high tiller density and LAI.The economic analysis showed DDSR as more beneficial rice establishment method than TPR with a high benefit-cost ratio(BCR)when the crop was irrigated with AWD irrigation threshold.Our results highlighted that with the use of short duration varieties,DDSR cultivation in conjunction with AWD irrigation can be more beneficial for higher productivity and crop yield.
基金Supported by Teaching Team Project of Hubei Provincial Department of Education(203201929203)the Natural Science Foundation of Hubei Province(2021CFB316)+1 种基金New Generation Information Technology Innovation Project Ministry of Education(20202020ITA05022)Hundreds of Schools Unite with Hundreds of Counties-University Serving Rural Revitalization Science and Technology Support Action Plan(BXLBX0847)。
文摘Image enhancement is a monumental task in the field of computer vision and image processing.Existing methods are insufficient for preserving naturalness and minimizing noise in images.This article discusses a technique that is based on wavelets for optimizing images taken in low-light.First,the V channel is created by mapping an image’s RGB channel to the HSV color space.Second,the acquired V channel is decomposed using the dual-tree complex wavelet transform(DT-CWT)in order to recover the concentrated information within its high and low-frequency subbands.Thirdly,an adaptive illumination boost technique is used to enhance the visibility of a low-frequency component.Simultaneously,anisotropic diffusion is used to mitigate the high-frequency component’s noise impact.To improve the results,the image is reconstructed using an inverse DT-CWT and then converted to RGB space using the newly calculated V.Additionally,images are white-balanced to remove color casts.Experiments demonstrate that the proposed approach significantly improves outcomes and outperforms previously reported methods in general.
文摘Continuously changing climate and availability of different rice genotypes make it necessary to find optimum time of sowing as well as suitable variety for cultivation to get maximum productivity under a specific set of climatic conditions. A field study was carried out to search out the suitable rice transplanting time for four different coarse genotypes under the semi-arid environment of Faisalabad. The experiment was conducted at Agronomic Research Area, University of Agriculture, Faisalabad and was laid out in randomized complete block design (RCBD) with split plot arrangement keeping transplanting time in main plots while rice genotypes in subplots. Variability among treatments was measured by Fisher’s ANOVA (P ≤ 5%) and LSD test was applied to compare the differences among treatments’ means. The ANOVA indicated statistically significant differences among genotypes as well as transplanting dates irrespective of all studied traits while interactive effects of both were found to be non-significant. NIBGE-1 performed best with maximum paddy yield of 6.05 t/ha while KSK-434 performed poor with paddy yield of 2.78 t/ha. Increased paddy yield and yield related parameters of all rice genotypes were recorded where transplantation was done on 25th of June. Generally, paddy yield decreased with delaying the transplanting time. The results suggested that NIBGE-1 can perform better under the semi-arid conditions of Faisalabad and last week of June might be the optimum time for nursery transplantation. It can also be further elucidated that late transplanting causes yield reduction which could not be recommended among farmers.
基金funded by Huanggang Normal University,China,Self-type Project of 2021(No.30120210103)and 2022(No.2042021008).
文摘Object detection in images has been identified as a critical area of research in computer vision image processing.Research has developed several novel methods for determining an object’s location and category from an image.However,there is still room for improvement in terms of detection effi-ciency.This study aims to develop a technique for detecting objects in images.To enhance overall detection performance,we considered object detection a two-fold problem,including localization and classification.The proposed method generates class-independent,high-quality,and precise proposals using an agglomerative clustering technique.We then combine these proposals with the relevant input image to train our network on convolutional features.Next,a network refinement module decreases the quantity of generated proposals to produce fewer high-quality candidate proposals.Finally,revised candidate proposals are sent into the network’s detection process to determine the object type.The algorithm’s performance is evaluated using publicly available the PASCAL Visual Object Classes Challenge 2007(VOC2007),VOC2012,and Microsoft Common Objects in Context(MS-COCO)datasets.Using only 100 proposals per image at intersection over union((IoU)=0.5 and 0.7),the proposed method attains Detection Recall(DR)rates of(93.17%and 79.35%)and(69.4%and 58.35%),and Mean Average Best Overlap(MABO)values of(79.25%and 62.65%),for the VOC2007 and MS-COCO datasets,respectively.Besides,it achieves a Mean Average Precision(mAP)of(84.7%and 81.5%)on both VOC datasets.The experiment findings reveal that our method exceeds previous approaches in terms of overall detection performance,proving its effectiveness.
基金supported by the project of 61971051 from the National Natural Science Foundation of China (NSFC)。
文摘Orbital angular momentum(OAM)technology,refers to Laguerre-Gaussian(LG)beams,twisted beams,vector/vortex beams,acoustic vortex beams and fractional vortex beams.It is an emerging and promising technology to improve the communication capacity,spectral efficiency,and anti-jamming capability due to its helical phase fronts and infinite orthogonal states.Although the OAM research began in the 1990s,the developing trends,current status,issues and characteristics through a systematic observation have not yet been performed.This paper presents a knowledge-based evolution of OAM research published in the Web of Science(WoS)from 2011 to 2021 using bibliometric analysis in Citepspace.The results demonstrate that the bandwidth,efficiency,gain,divergence,phase quantization,bulky and complex feeding structures,misalignment,distortion,interferences atmospheric turbulence and diffraction were the key issues found in the OAM technology.The main research hotspots and categories,influential authors,leading journals,best institutions of OAM show a strong bias in favor of their functions and technology developments.The research on OAM was mainly performed by the counties that have developed the 5G and now moving towards 6G communications like China,USA and South Korea.This study would serve as an inclusive guide on the future research trends and status especially for the OAM researchers.
基金Supported by the National Key Research and Development Program of China(2016YFD0501302)the National Natural Science Foundation of China(31772801)。
文摘The aim of the present study was to investigate minimum inhibitory concentration(MIC)distributions by broth microdilution(BMD)method and to determine the preliminary epidemiological cut-off value(ECV)of colistin by epidemiological cut-off(ECOFF)finder against E.coli from chickens in China.Anal swabs were collected from chicken farms in China.BMD method was used to measure MIC50 and MIC90 of colistin which were 2 and 4μg•mL^(-1),respectively.MIC frequency distributions for colistin were used to estimate preliminary ECV(8μg•mL^(-1)).High percentages of resistance to ampicillin(94.12%),nalidixic acid(94.12%),enrofloxacin(94.12%),tetracycline(94.12%),ciprofloxacin(88.24%),florfenicol(88.24%),neomycin(64.71%),gentamicin(58.82%),levofloxacin(58.82%),doxycycline(88.24%)and cefalexin(76.47%)were found.In addition,low percentages of resistance to amikacin(5.88%),spectinomycin(17.65%)and fosfomycin(41.18%)were noted.Notably,amoxicillin,sulfisoxazole and trimethoprim resulted in a 100%resistance generation efficacy rate.Prevalence of mcr-1 in E.coli(9/17)in chromosomal DNA was higher than mcr-4(2/17)gene,and mcr-1(5/17)was higher than mcr-4(3/17)in plasmid.
文摘Peral millet being drought tolerant has substantial potential to contribute in food security ensuring the food, fodder and nutritional value in different Asian and African countries. Susceptibility to abiotic and biotic factors and low productivity are the main reasons for decreasing productivity and area of millets. In this context, evaluation of the effect of weed control practices and varying sowing dates on grain yield of kharif season grown pearl millet (Pennisetum americanum L.) was demonstrated at post graduate agriculture research station, University of Agriculture, Faisalabad during 2015. Forage pearl millet was sown at three different sowing dates i.e. mid-June, end of June and mid-July and four weed control practices viz. weedy check (no weeding), twice hoeing at 15 and 30 days after sowing (DAS), weed control using herbicides i.e. application of Atrazine (Awax 38 SC) @330 g a.i. ha-1 at 15 DAS, and twice foliar applications of 10% Sorghum water extract (Sorgaab) (at 15 and 30 DAS). The experiment was laid out in randomized complete block design (RCBD) under split plot arrangement, comprising of three replications. The treatments with varying sowing dates were randomized in main plots and weed control practices were in subplots. Results showed that the highest plant height (279.51 cm), leaf area (2777.80 cm2), fresh weight of leaves per plant (155.57 g), maximum number of grains per head (3162.0) and grain yield (3419.7 kg·ha-1) were obtained in the treatment combination of 30th June sowing × twice weed hoeing (at 15 and 30 DAS) while, maximum 1000-grain weight (8.45 g) was observed in treatments where weeds were controlled by hoeing (at 15 and 30 DAS). Moreover, cultural weed control practices reduce significantly weed density, fresh and dry Wight of weeds. In sum, it is concluded that to reduce the weed-crop competition and to gain higher productivity of pearl millet, field should be weed free 20 - 45 days after sowing.
文摘The research screening of adoptive elite tea clones was conducted at NTRI, Mansehra during 2011-2012. Nine clones 101Aa, 105aa, 108aa, 561aa, ll7aa, 219ab, 470bb and 180bd were evaluated for seedling performance. Randomized complete block design was used with three replications. Data was recorded on various morphological characters after 8 months. The results showed that high survival percentage, shoot length, number of roots plant-1, number of leaves plant1 and root length were observed in clone 105aa. While the highest fresh weight and dry weight of leaves were observed in clones 117aa and 105aa. The clone 105aa was drought resistant, high survival percentage and root growth. On the basis of the results, clone 105aa was recommended for cultivation through cuttings in the hilly areas of Pakistan where unequal rainfall distribution was a major hitch.
文摘Crop production is greatly influenced by water and nutrition stress in semi-arid areas. Nitrogen and water are two most important yield limiting factors which effect economic production of wheat. Drought initiates when large area of land suffers from absence of precipitation for temporary periods. Though, not only water scarceness but also low relative humidity and high temperature are other climate factors which induce drought condition. Whereas Effective nutrition (nitrogen) maintains crops metabolic activities and has the potential to lessen drought stress. According to study carried out to explore the influence of varying levels of potential soil moisture deficit (PSMD) and nitrogen, an experiment was planned at agronomy research area, University of Agriculture, Faisalabad. It was laid out in randomized complete block design (RCBD) with split plot arrangement, and replicated thrice. Two factors: potential soil moisture deficit levels (I1: irrigation at 50 mm PSMD, I2: irrigation at 75 mm PSMD and I3: irrigation at 100 mm PSMD) were randomized in main plots, while sub plot nitrogen levels {control (No nitrogen), 50, 100 and 150 kg N ha-1} were randomized. Adequate nitrogen application along with sufficient irrigation management gave highest yield. Under water deficit conditions adequate nitrogen application ameliorates the drought stress. Highest plant height (86.27 cm), number of productive tillers (320.0), grain·spike-1(49.73), test weight (50.55 g) and grain yield (6.72 t·ha-1) were observed with 75 mm PSMD and 150 kg·ha-1 application of nitrogen. While radiation use efficiency for dry matter accumulation of wheat ranged from 1.53 - 1.87 g·MJ-1 whereas, radiation use efficiency for grain yield ranged from 0.421 - 0.473 g·MJ-1. Results revealed that highest RUE obtained I3 (75 mm PSMD) and nitrogen application at 150 kg·ha-1. Judicial application of irrigation and fertilizer not only boosts the yield but also saves resource and increases former output.
基金Project supported by the National Natural Science Foundation of China(Nos.62321001 and 62301065)。
文摘A 3D-printed dual-band dual-polarization gap waveguide(GWG)slot antenna array is presented for Ku-band satellite communications(SATCOMs)in this paper.Two stacked GWGs excite the quasi-TE420 and quasi-TE240 modes in the cavity separately through orthogonal slots.An unequal power divider with a large power division ratio is proposed based on a ridge gap waveguide(RGW).Two power tapering distribution networks are realized for dual polarizations,and the sidelobe level(SLL)is suppressed.The antenna is fabricated in parts by direct metal laser sintering(DMLS),and the whole antenna is obtained by screw assembly.The measured impedance bandwidth well covers both the transmitting band(Tx,from 14.0 GHz to 14.5 GHz)and the receiving band(Rx,from 12.25 GHz to 12.75 GHz)required for Ku-band SATCOMs.Measurement results show that the maximum gain reaches 25.6 dBi,and that the radiation efficiency of the dual-band is>72%.
基金supported by Creative Human Resource Development Program (No. BK21PLUS)。
文摘Highly reliable and flexible control is required for distributed generation(DG) to efficiently connect to the grid.Smart inverters play a key role in the control and integration of DG into the power grid and provide advanced functionalities. In this paper, an energy-based single-phase voltage-source smart inverter(SPV-SSI) of 5 k VA is designed and analyzed in detail. SPV-SSI is capable of supplying the power to local load and the utility load up to the rated capacity of the inverter, injecting the power into the grid, storing the energy in lead-acid battery bank, controlling the voltage at the point of common coupling(PCC) during voltage sags or faults, and making decisions on real-time pricing information obtained from the utility grid through advanced metering. The complete design of smart inverter in dq frame, bi-directional DC-DC buck-boost converter, IEEE standard 1547 based islanding and recloser, and static synchronous compensator(STATCOM) functionalities is presented in this paper. Moreover, adaptive controllers, i. e., fuzzy proportional-integral(F-PI) controller and fuzzy-sliding mode controller(F-SMC) are designed. The performances of F-PI controller and F-SMC are superior, stable, and robust compared with those of conventionally tuned PI controllers for voltage control loop(islanded mode) and current control loop(grid-connected mode).