In this study,we explore an innovative approach to enhancing the photovoltaic performance of organic solar cells through core fluorination of the non-fullerene acceptor.We developed a benzotriazole-based non-fullerene...In this study,we explore an innovative approach to enhancing the photovoltaic performance of organic solar cells through core fluorination of the non-fullerene acceptor.We developed a benzotriazole-based non-fullerene acceptor with a trifluorinated phenyl side chain,referred to as YNPF3,which has a significant impact on the molecular properties,including a surprisingly varied local dipole moment and crystalline nature,as well as effectively stabilizing the frontier molecular orbital energy levels.Furthermore,a trifluorophenyl-based non-fullerene acceptor exhibits enhanced absorptivity,restricted voltage loss,and favorable photoactive morphology compared with its methyl side chain counterpart non-fullerene acceptor.Consequently,a binary organic solar cell based on YNPF3 achieves an outstanding power conversion efficiency of 19.2%,surpassing the control device with a efficiency of 16.5%.Finally,the YNPF3-based organic solar cell presents an impressive power conversion efficiency of 16.6%in a mini-module device with an aperture size of 12.5 cm^(2),marking the highest reported efficiency for series-connected binary organic solar cells with a photoactive area over 10 cm^(2).展开更多
The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates f...The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates for the electron transport layer(ETL)in high-performance inverted OSCs.When a solution-processed SnO_(2)ETL is employed,however,the presence of interfacial defects and suboptimal interfacial contact can lower the power conversion efficiency(PCE)and operational stability of OSCs.Herein,highly efficient and stable inverted OSCs by modification of the SnO_(2)surface with ultraviolet(UV)-curable acrylate oligomers(SAR and OCS)are demonstrated.The highest PCEs of 16.6%and 17.0%are achieved in PM6:Y6-BO OSCs with the SAR and OCS,respectively,outperforming a device with a bare SnO_(2)ETL(PCE 13.8%).The remarkable enhancement of PCEs is attributed to the optimized interfacial contact,leading to mitigated surface defects.More strikingly,improved light-soaking and thermal stability strongly correlated with the interfacial defects are demonstrated for OSCs based on SnO_(2)/UV cross-linked resins compared to OSCs utilizing bare SnO_(2).We believe that UV cross-linking oligomers will play a key role as interfacial modifiers in the future fabrication of large-area and flexible OSCs with high efficiency and stability.展开更多
The DNS over HTTPS(Hypertext Transfer Protocol Secure)(DoH)is a new technology that encrypts DNS traffic,enhancing the privacy and security of end-users.However,the adoption of DoH is still facing several research cha...The DNS over HTTPS(Hypertext Transfer Protocol Secure)(DoH)is a new technology that encrypts DNS traffic,enhancing the privacy and security of end-users.However,the adoption of DoH is still facing several research challenges,such as ensuring security,compatibility,standardization,performance,privacy,and increasing user awareness.DoH significantly impacts network security,including better end-user privacy and security,challenges for network security professionals,increasing usage of encrypted malware communication,and difficulty adapting DNS-based security measures.Therefore,it is important to understand the impact of DoH on network security and develop newprivacy-preserving techniques to allowthe analysis of DoH traffic without compromising user privacy.This paper provides an in-depth analysis of the effects of DoH on cybersecurity.We discuss various techniques for detecting DoH tunneling and identify essential research challenges that need to be addressed in future security studies.Overall,this paper highlights the need for continued research and development to ensure the effectiveness of DoH as a tool for improving privacy and security.展开更多
Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological lev...Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.展开更多
This article presents a multilayer hybrid classical-quantum classifier for predicting the lifetime of LiFePO_(4) batteries using early degradation data.The multilayer approach uses multiple variational quantum circuit...This article presents a multilayer hybrid classical-quantum classifier for predicting the lifetime of LiFePO_(4) batteries using early degradation data.The multilayer approach uses multiple variational quantum circuits in cascade,which allows more parameters to be used as weights in a single run hence increasing accuracy and provides faster cost function convergence for the optimizer.The proposed classifier predicts with an accuracy of 92.8%using data of the first four cycles.The effectiveness of the hybrid classifier is also presented by validating the performance using untrained data with an accuracy of 84%.We also demonstrate that the proposed classifier outperforms traditional machine learning algorithms in classification accuracy.In this paper,we show the application of quantum machine learning in solving a practical problem.This study will help researchers to apply quantum machine learning algorithms to more complex real-world applications,and reducing the gap between quantum and classical computing.展开更多
Crop residue-based biochar(CRB)has shown great potential for removing trace elements(TEs)from aquatic matrices.Despite the increasing interest in this area,no review has focused specifically on the efficacy of CRB for...Crop residue-based biochar(CRB)has shown great potential for removing trace elements(TEs)from aquatic matrices.Despite the increasing interest in this area,no review has focused specifically on the efficacy of CRB for TEs removal in aquatic environments.This comprehensive review examines the global TEs water contamination status with an emphasis on their sources,compositional metrics for crop residue feedstock(proximate,ultimate,and lignocellulosic properties),and the potential use of CRB for TEs removal in aquatic media.It also evaluates the factors that affect the ability of CRB to remove TEs,such as feedstock type,production conditions,water pH,background electrolytes,water temperature,CRB/water ratio,and underlying pollutant sorption mechanisms.This review also discusses the practical applications of CRB in real water samples and engineering considerations for designing CRB with improved physicochemical properties,treatment efficiencies,and regeneration abilities.Additionally,the cost-benefit and economic assessment of CRB,challenges,and future research directions related to CRB are highlighted to promote research on this sustainable source of biochar.By elucidating the prospects of CRB as an adsorbent,this review emphasizes the need for continued research on its practical implications for environmentally relevant pollutant concentrations.展开更多
基金supported by the National Research Foundation(NRF)(NRF-2021R1A2C2091787)by the Technology Innovation Program(RS-2024-00422305)+1 种基金funded by the Ministry of Trade,Industry&Energy,by the National Research Council of Science and Technology(Grant No.Global-23-007)by the Korea Research Institute of Chemical Technology(KRICT)(No.KS2422-10)of Republic of Korea。
文摘In this study,we explore an innovative approach to enhancing the photovoltaic performance of organic solar cells through core fluorination of the non-fullerene acceptor.We developed a benzotriazole-based non-fullerene acceptor with a trifluorinated phenyl side chain,referred to as YNPF3,which has a significant impact on the molecular properties,including a surprisingly varied local dipole moment and crystalline nature,as well as effectively stabilizing the frontier molecular orbital energy levels.Furthermore,a trifluorophenyl-based non-fullerene acceptor exhibits enhanced absorptivity,restricted voltage loss,and favorable photoactive morphology compared with its methyl side chain counterpart non-fullerene acceptor.Consequently,a binary organic solar cell based on YNPF3 achieves an outstanding power conversion efficiency of 19.2%,surpassing the control device with a efficiency of 16.5%.Finally,the YNPF3-based organic solar cell presents an impressive power conversion efficiency of 16.6%in a mini-module device with an aperture size of 12.5 cm^(2),marking the highest reported efficiency for series-connected binary organic solar cells with a photoactive area over 10 cm^(2).
基金the Partnership for Skills in Applied Sciences,Engineering and Technology(PASET)-Regional Scholarship Innovation Fund(RSIF)(World Bank PASET No.IP22-15)supported by the National Research Foundation(NRF)(NRF-2021R1A2C2091787 and NRF-2022M3H4A1A03076280)+1 种基金the Korea Research Institute of Chemical Technology(KRICT)of the Republic of Korea(No.KS2422-10)the National Research Council of Science and Technology(Grant No.Global-23-007)of Republic of Korea。
文摘The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates for the electron transport layer(ETL)in high-performance inverted OSCs.When a solution-processed SnO_(2)ETL is employed,however,the presence of interfacial defects and suboptimal interfacial contact can lower the power conversion efficiency(PCE)and operational stability of OSCs.Herein,highly efficient and stable inverted OSCs by modification of the SnO_(2)surface with ultraviolet(UV)-curable acrylate oligomers(SAR and OCS)are demonstrated.The highest PCEs of 16.6%and 17.0%are achieved in PM6:Y6-BO OSCs with the SAR and OCS,respectively,outperforming a device with a bare SnO_(2)ETL(PCE 13.8%).The remarkable enhancement of PCEs is attributed to the optimized interfacial contact,leading to mitigated surface defects.More strikingly,improved light-soaking and thermal stability strongly correlated with the interfacial defects are demonstrated for OSCs based on SnO_(2)/UV cross-linked resins compared to OSCs utilizing bare SnO_(2).We believe that UV cross-linking oligomers will play a key role as interfacial modifiers in the future fabrication of large-area and flexible OSCs with high efficiency and stability.
基金Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under Grant Number RGP.2/373/45.
文摘The DNS over HTTPS(Hypertext Transfer Protocol Secure)(DoH)is a new technology that encrypts DNS traffic,enhancing the privacy and security of end-users.However,the adoption of DoH is still facing several research challenges,such as ensuring security,compatibility,standardization,performance,privacy,and increasing user awareness.DoH significantly impacts network security,including better end-user privacy and security,challenges for network security professionals,increasing usage of encrypted malware communication,and difficulty adapting DNS-based security measures.Therefore,it is important to understand the impact of DoH on network security and develop newprivacy-preserving techniques to allowthe analysis of DoH traffic without compromising user privacy.This paper provides an in-depth analysis of the effects of DoH on cybersecurity.We discuss various techniques for detecting DoH tunneling and identify essential research challenges that need to be addressed in future security studies.Overall,this paper highlights the need for continued research and development to ensure the effectiveness of DoH as a tool for improving privacy and security.
基金supported by the Henan Institute for Chinese Development Strategy of Engineering&Technology(Grant No.2022HENZDA02)by the Science&Technology Department of Sichuan Province Project(Grant No.2021YFH0010).
文摘Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.
文摘This article presents a multilayer hybrid classical-quantum classifier for predicting the lifetime of LiFePO_(4) batteries using early degradation data.The multilayer approach uses multiple variational quantum circuits in cascade,which allows more parameters to be used as weights in a single run hence increasing accuracy and provides faster cost function convergence for the optimizer.The proposed classifier predicts with an accuracy of 92.8%using data of the first four cycles.The effectiveness of the hybrid classifier is also presented by validating the performance using untrained data with an accuracy of 84%.We also demonstrate that the proposed classifier outperforms traditional machine learning algorithms in classification accuracy.In this paper,we show the application of quantum machine learning in solving a practical problem.This study will help researchers to apply quantum machine learning algorithms to more complex real-world applications,and reducing the gap between quantum and classical computing.
基金supported by the National Natural Science Foundation of China(41,977,274,42,130,710)Shaanxi Province Science and Technology Innovation Team(2022TD-09)+1 种基金the Key Industrial Chain Project of Shaanxi Province(2019ZDLNY01-05-022022ZDLNY02-02).
文摘Crop residue-based biochar(CRB)has shown great potential for removing trace elements(TEs)from aquatic matrices.Despite the increasing interest in this area,no review has focused specifically on the efficacy of CRB for TEs removal in aquatic environments.This comprehensive review examines the global TEs water contamination status with an emphasis on their sources,compositional metrics for crop residue feedstock(proximate,ultimate,and lignocellulosic properties),and the potential use of CRB for TEs removal in aquatic media.It also evaluates the factors that affect the ability of CRB to remove TEs,such as feedstock type,production conditions,water pH,background electrolytes,water temperature,CRB/water ratio,and underlying pollutant sorption mechanisms.This review also discusses the practical applications of CRB in real water samples and engineering considerations for designing CRB with improved physicochemical properties,treatment efficiencies,and regeneration abilities.Additionally,the cost-benefit and economic assessment of CRB,challenges,and future research directions related to CRB are highlighted to promote research on this sustainable source of biochar.By elucidating the prospects of CRB as an adsorbent,this review emphasizes the need for continued research on its practical implications for environmentally relevant pollutant concentrations.