Manganese was leached from a low-grade manganese ore(LGMO)using banana peel as the reductant in a dilute sulfuric acid medium.The effects of banana peel amount,H2SO4 concentration,reaction temperature,and time on Mn l...Manganese was leached from a low-grade manganese ore(LGMO)using banana peel as the reductant in a dilute sulfuric acid medium.The effects of banana peel amount,H2SO4 concentration,reaction temperature,and time on Mn leaching from the complex LGMO were studied.A leaching efficiency of~98%was achieved at a leaching time of 2 h,banana peel amount of 4 g,leaching temperature of 120°C,manganese ore amount of 5 g,and sulfuric acid concentration of 15vol%.The phase,microstructural,and chemical analyses of LGMO samples before and after the leaching process confirmed the successful leaching of manganese.Furthermore,the leaching process followed the shrinking core model and the leaching rate was controlled by a surface chemical reaction(1−(1−x)^1/3=kt)mechanism with an apparent activation energy of 40.19 kJ·mol^−1.展开更多
Manganese(Mn) is an important industrial mineral.Information about the chemical and phase constitution along with the concentration of impurities presented in Mn ore is compulsory in assessing its suitability for diff...Manganese(Mn) is an important industrial mineral.Information about the chemical and phase constitution along with the concentration of impurities presented in Mn ore is compulsory in assessing its suitability for different applications.We performed the qualitative and quantitative analysis of low-grade Mn ore(LGMO) using laser-induced breakdown spectroscopy(LIBS) in conjunction with x-ray diffraction(XRD), x-ray fluorescence(XRF) and scanning electron microscopy(SEM) coupled with energy dispersive x-ray electron spectroscopy(EDS).The optical emission spectra of the LGMO sample displayed the presence of Mn, Si, Ca, Fe, Al, Mg,V, Ti, Sr, Ni, Na, Ba and Li.The plasma parameters, electron temperature and number density were estimated using the Boltzmann plot and Stark broadening line profile methods and were found to be 7500 K±750 K and 8.18±0.8×1017 cm-3, respectively.Quantitative analysis was performed using the calibration-free LIBS(CF-LIBS) method and its outcome along with XRD, XRF and SEM-EDS data showed almost analogous elemental composition, while the LIBS method gave acceptably precise elemental analysis by detecting the low atomic number element Li besides V and Sr.The results obtained using LIBS for the LGMO exhibited its ability as a powerful analytical tool and XRF, XRD and SEM-EDS as complementary methods for the compositional analysis of complex low-grade mineral ore.展开更多
Using marble samples from the Nikani Ghar marble and Nowshera Formation from Northern Pakistan the determination of the temperature of metamorphism was undertaken with the help of calcite-dolomite solvus geothermomete...Using marble samples from the Nikani Ghar marble and Nowshera Formation from Northern Pakistan the determination of the temperature of metamorphism was undertaken with the help of calcite-dolomite solvus geothermometer. Two types of marbles, that is, calcite-dolomite marble and quartz-bearing calcite-dolomite marble were selected. Petrographic and scanning electron microscope analysis of dolomite samples indicated different grain sizes. X-ray diffraction technique indicated the calcites MgCO3 content up to 7.93 mol.%. Nikani Ghar marble samples have shown lower contents of MgCO3 as compared to samples from Nowshera Formation. The calcite-dolomite-quartz marble has also showed relatively lower MgCO3 content and hence rather low temperature (-500 ℃). The temperature reached during peak metamorphism of the investigated marble occurrence, based on calcitedolomite solvus was 628 ℃. Metamorphic temperatures derived from the present study were shown as a linear graph and values were in good agreement with the published literature.展开更多
The rhizosphere plays a crucial role in plant growth and resilience to biotic and abiotic stresses,highlighting the complex communication between plants and their dynamic rhizosphere environment.Plants produce a wide ...The rhizosphere plays a crucial role in plant growth and resilience to biotic and abiotic stresses,highlighting the complex communication between plants and their dynamic rhizosphere environment.Plants produce a wide range of signaling molecules that facilitate communication with various rhizosphere factors,yet our understanding of these mechanisms remains elusive.In addition to protein-coding genes,increasing evidence underscores the critical role of microRNAs(miRNAs),a class of non-coding single-stranded RNA molecules,in regulating plant growth,development,and responses to rhizosphere stresses under diverse biotic and abiotic factors.In this review,we explore the crosstalk between miRNAs and their target mRNAs,which influence the development of key plant structures shaped by the belowground environment.Moving forward,more focused studies are needed to clarify the functions and expression patterns of miRNAs,to uncover the common regulatory mechanisms that mediate plant tolerance to rhizosphere dynamics.Beyond that,we propose that using artificial miRNAs and manipulating the expression of miRNAs and their targets through overexpression or knockout/knockdown approaches could effectively investigate their roles in plant responses to rhizosphere stresses,offering significant potential for advancing crop engineering.展开更多
Long non-coding RNAs(lncRNAs)have emerged as integral gene-expression regulators underlying plant growth,development,and adaptation.To adapt to the heterogeneous and dynamic rhizosphere,plants use interconnected regul...Long non-coding RNAs(lncRNAs)have emerged as integral gene-expression regulators underlying plant growth,development,and adaptation.To adapt to the heterogeneous and dynamic rhizosphere,plants use interconnected regulatory mechanisms to optimally fine-tune gene-expression-governing interactions with soil biota,as well as nutrient acquisition and heavy metal tolerance.Recently,high-throughput sequencing has enabled the identification of plant lncRNAs responsive to rhizosphere biotic and abiotic cues.Here,we examine lncRNA biogenesis,classification,and mode of action,highlighting the functions of lncRNAs in mediating plant adaptation to diverse rhizosphere factors.We then discuss studies that reveal the significance and target genes of lncRNAs during developmental plasticity and stress responses at the rhizobium interface.A comprehensive understanding of specific lncRNAs,their regulatory targets,and the intricacies of their functional interaction networks will provide crucial insights into how these transcriptomic switches fine-tune responses to shifting rhizosphere signals.Looking ahead,we foresee that single-cell dissection of cell-type-specific lncRNA regulatory dynamics will enhance our understanding of the precise developmental modulation mechanisms that enable plant rhizosphere adaptation.Overcoming future challenges through multi-omics and genetic approaches will more fully reveal the integral roles of lncRNAs in governing plant adaptation to the belowground environment.展开更多
文摘Manganese was leached from a low-grade manganese ore(LGMO)using banana peel as the reductant in a dilute sulfuric acid medium.The effects of banana peel amount,H2SO4 concentration,reaction temperature,and time on Mn leaching from the complex LGMO were studied.A leaching efficiency of~98%was achieved at a leaching time of 2 h,banana peel amount of 4 g,leaching temperature of 120°C,manganese ore amount of 5 g,and sulfuric acid concentration of 15vol%.The phase,microstructural,and chemical analyses of LGMO samples before and after the leaching process confirmed the successful leaching of manganese.Furthermore,the leaching process followed the shrinking core model and the leaching rate was controlled by a surface chemical reaction(1−(1−x)^1/3=kt)mechanism with an apparent activation energy of 40.19 kJ·mol^−1.
文摘Manganese(Mn) is an important industrial mineral.Information about the chemical and phase constitution along with the concentration of impurities presented in Mn ore is compulsory in assessing its suitability for different applications.We performed the qualitative and quantitative analysis of low-grade Mn ore(LGMO) using laser-induced breakdown spectroscopy(LIBS) in conjunction with x-ray diffraction(XRD), x-ray fluorescence(XRF) and scanning electron microscopy(SEM) coupled with energy dispersive x-ray electron spectroscopy(EDS).The optical emission spectra of the LGMO sample displayed the presence of Mn, Si, Ca, Fe, Al, Mg,V, Ti, Sr, Ni, Na, Ba and Li.The plasma parameters, electron temperature and number density were estimated using the Boltzmann plot and Stark broadening line profile methods and were found to be 7500 K±750 K and 8.18±0.8×1017 cm-3, respectively.Quantitative analysis was performed using the calibration-free LIBS(CF-LIBS) method and its outcome along with XRD, XRF and SEM-EDS data showed almost analogous elemental composition, while the LIBS method gave acceptably precise elemental analysis by detecting the low atomic number element Li besides V and Sr.The results obtained using LIBS for the LGMO exhibited its ability as a powerful analytical tool and XRF, XRD and SEM-EDS as complementary methods for the compositional analysis of complex low-grade mineral ore.
基金the financial support extended by the Higher Education Commission (HEC),Pakistan and National Academy of Sciences (USA),project ID 131,under the PAK-USA S & T Cooperation Program,Award (No.0521315)the HEC,Pakistan for their support in the form of “International Research Support Initiative Program (IRSIP)” to conduct a part of research at Department of Earth Sciences,University of Cambridge,UnitedKingdomfinancial support extended by the Directorate of S & T,KP regarding minerals upgradation
文摘Using marble samples from the Nikani Ghar marble and Nowshera Formation from Northern Pakistan the determination of the temperature of metamorphism was undertaken with the help of calcite-dolomite solvus geothermometer. Two types of marbles, that is, calcite-dolomite marble and quartz-bearing calcite-dolomite marble were selected. Petrographic and scanning electron microscope analysis of dolomite samples indicated different grain sizes. X-ray diffraction technique indicated the calcites MgCO3 content up to 7.93 mol.%. Nikani Ghar marble samples have shown lower contents of MgCO3 as compared to samples from Nowshera Formation. The calcite-dolomite-quartz marble has also showed relatively lower MgCO3 content and hence rather low temperature (-500 ℃). The temperature reached during peak metamorphism of the investigated marble occurrence, based on calcitedolomite solvus was 628 ℃. Metamorphic temperatures derived from the present study were shown as a linear graph and values were in good agreement with the published literature.
基金supported by the Natural Science Foundation of Zhejiang Province(LZ25C130007)the National Natural Science Foundation of China(32370341 and 32441002)+1 种基金the Sanya Science and Technology Innovation Program(2022KJCX48)the Zhejiang Major Scientific and Technological Project of Agricultural(Upland crop)Breeding(2021C02064-6)。
文摘The rhizosphere plays a crucial role in plant growth and resilience to biotic and abiotic stresses,highlighting the complex communication between plants and their dynamic rhizosphere environment.Plants produce a wide range of signaling molecules that facilitate communication with various rhizosphere factors,yet our understanding of these mechanisms remains elusive.In addition to protein-coding genes,increasing evidence underscores the critical role of microRNAs(miRNAs),a class of non-coding single-stranded RNA molecules,in regulating plant growth,development,and responses to rhizosphere stresses under diverse biotic and abiotic factors.In this review,we explore the crosstalk between miRNAs and their target mRNAs,which influence the development of key plant structures shaped by the belowground environment.Moving forward,more focused studies are needed to clarify the functions and expression patterns of miRNAs,to uncover the common regulatory mechanisms that mediate plant tolerance to rhizosphere dynamics.Beyond that,we propose that using artificial miRNAs and manipulating the expression of miRNAs and their targets through overexpression or knockout/knockdown approaches could effectively investigate their roles in plant responses to rhizosphere stresses,offering significant potential for advancing crop engineering.
基金supported by the National Key Research and Development Program of China(2023YFF1000500)the Sanya Science and Technology Innovation Program(2022KJCX48).
文摘Long non-coding RNAs(lncRNAs)have emerged as integral gene-expression regulators underlying plant growth,development,and adaptation.To adapt to the heterogeneous and dynamic rhizosphere,plants use interconnected regulatory mechanisms to optimally fine-tune gene-expression-governing interactions with soil biota,as well as nutrient acquisition and heavy metal tolerance.Recently,high-throughput sequencing has enabled the identification of plant lncRNAs responsive to rhizosphere biotic and abiotic cues.Here,we examine lncRNA biogenesis,classification,and mode of action,highlighting the functions of lncRNAs in mediating plant adaptation to diverse rhizosphere factors.We then discuss studies that reveal the significance and target genes of lncRNAs during developmental plasticity and stress responses at the rhizobium interface.A comprehensive understanding of specific lncRNAs,their regulatory targets,and the intricacies of their functional interaction networks will provide crucial insights into how these transcriptomic switches fine-tune responses to shifting rhizosphere signals.Looking ahead,we foresee that single-cell dissection of cell-type-specific lncRNA regulatory dynamics will enhance our understanding of the precise developmental modulation mechanisms that enable plant rhizosphere adaptation.Overcoming future challenges through multi-omics and genetic approaches will more fully reveal the integral roles of lncRNAs in governing plant adaptation to the belowground environment.