期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Integrated multi-omics analysis provides molecular insights into flavor variation in melons grafted onto two different pumpkin rootstocks during fruit development 被引量:1
1
作者 muhammad Mohsin Kaleem Peilu Zhu +4 位作者 muhammad ateeq Shuai Li Jianguo Wang Jintao Cheng Zhilong Bie 《Horticultural Plant Journal》 2025年第3期1181-1197,共17页
Melon fruit flavor is a key quality characteristic that influences consumer preference.Grafting is an effective technique to enhance fruit quality but yields divergent outcomes in terms of fruit flavor.To address this... Melon fruit flavor is a key quality characteristic that influences consumer preference.Grafting is an effective technique to enhance fruit quality but yields divergent outcomes in terms of fruit flavor.To address this problem,we analyzed parallel changes in flavor-related metabolite accumulation and gene expression in two pumpkin rootstock grafted melons during four fruit developmental stages.We identified 26061 expressed genes and 840 metabolites from 21 different compound classes,including carbohydrates,amino acids,and lipids.We also detected 50 aroma volatile compounds in the grafted melons.Results showed that genes and metabolites associated with metabolic pathways(carbohydrate,amino acid,lipid,and phenylpropanoid)play a key role in flavor formation.Compared with‘Sizhuang 12’,‘Tianzhen 1’rootstock improved melon fruit flavor by upregulating sugar-related genes(HK,MPI,MIOX,and STP)and inducing metabolite accumulation(d-ribose-5-phosphate,d-galactose,and trehalose 6-phosphate),whereas decreasing bitterness-related amino acids(l-arginine,l-asparagine,and l-tyrosine)and associated genes(thrC,ACS,and GLUL)expression at ripening stage.Furthermore,‘Tianzhen 1’exhibited higher expression levels of enzyme-coding genes(4CL,CSE,and COMT)responsible for aroma volatile synthesis than‘Sizhuang 12’rootstock.Taken together,our results decipher the basis of the molecular mechanism underlying fruit flavor in grafted melons and provide valuable information for the melons genetic improvement. 展开更多
关键词 Cucumis melo FLAVOR Grafting METABOLOME Transcriptome
在线阅读 下载PDF
Seed Priming and Foliar Supplementation withβ-aminobutyric Acid Alleviates Drought Stress through Mitigation of Oxidative Stress and Enhancement of Antioxidant Defense in Linseed(Linum usitatissimum L.) 被引量:1
2
作者 Tauqeer Ahmad Yasir muhammad ateeq +9 位作者 Allah Wasaya Mubshar Hussain Naeem Sarwar Khuram Mubeen Mudassir Aziz muhammad Aamir Iqbal Chukwuma COgbaga Ibrahim Al-Ashkar Md Atikur Rahman Ayman El Sabagh 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第11期3113-3131,共19页
Drought is one of the critical limitations to agricultural soils and crop plants.Scarcity of water is increasing due to climate change that lead to increasing threats to global food security.Therefore,ecofriendly and ... Drought is one of the critical limitations to agricultural soils and crop plants.Scarcity of water is increasing due to climate change that lead to increasing threats to global food security.Therefore,ecofriendly and cost effective strategies are highly desirable for mitigating drought stress along with sustainable and smart agricultural production.The aim of the study was to mitigate DS using seed priming and exogenous supplementation ofβ-aminobutyric acid(BABA)in linseed(Linum usitatissimum L.).Different doses(0,50,100 and 150μM)of BABA were used for seed priming agent and foliar spraying under three soil moisture levels viz.,25%(SM25),45%(SM45)and 65%(SM65).The response variables of both experiments included different agro-botanical traits and oxidative stress indicators such as melondialdehyde content,free proline accumulation,and antioxidant defense in plants.The linseed plants showed water stress at SM25 that reduced plant height,number of branches per plant,time taken to flower initiation and heading,and root and shoot dry weights.Additionally,the number of capsules and seeds per capsule showed a significant decline at SM25,which led to a drastic reduction in 100-seed weight yield in linseed plants in both experiments.However,seed priming and foliar supplementation with of BABA(50–100μM)significantly improved these morpho-agronomical attributes in linseed plants under DS.The results revealed that the BABA was fully active in linseed plants at SM25.Interestingly,the combination of SM25 with BABA significantly improved the antioxidant enzymes superoxide dismutase(SOD),catalase(CAT),ascorbate peroxidase(APX),and peroxidase(POD)activity,which significantly enhanced DS tolerance in linseed plants.These findings might be useful to oil seed breeders and farmers linseed for breeding program in linseed plants as well as sustainable agricultural production of oil seed crop plants. 展开更多
关键词 LINSEED water stress signaling molecule climate change biostimulant ecofriendly approach sustainable agricultural
在线阅读 下载PDF
Role of Organic Amendments to Mitigate Cd Toxicity and Its Assimilation in Triticum aestivum L.
3
作者 Tauqeer Ahmad Yasir Sobia Aslam +9 位作者 muhammad Shahid Rizwan Allah Wasaya muhammad ateeq muhammad Naeem Khan Sikander Khan Tanveer Walid Soufan Basharat Ali Allah Ditta Arpna Kumari Ayman EL Sabagh 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第11期2491-2504,共14页
In soil biota,higher and enduring concentration of heavy metals like cadmium(Cd)is hazardous and associated with great loss in growth,yield,and quality parameters of most of the crop plants.Recently,in-situ applicatio... In soil biota,higher and enduring concentration of heavy metals like cadmium(Cd)is hazardous and associated with great loss in growth,yield,and quality parameters of most of the crop plants.Recently,in-situ applications of eco-friendly stabilizing agents in the form of organic modifications have been utilized to mitigate the adverse effects of Cd-toxicity.This controlled experiment was laid down to appraise the imprints of various applied organic amendments namely poultry manure(PM),farmyard manure(FYM),and sugarcane press mud(PS)to immobilize Cd in polluted soil.Moreover,phytoavailability of Cd in wheat was also accessed under an alkaline environment.Results revealed that the addition of FYM(5–10 ton ha^(-1))in Cd-contaminated soil significantly increased germination rate,leaf chlorophyll content,plant height,spike length,biological and grain yield amongst all applied organic amendments.Moreover,the addition of FYM(5–10 ton ha^(-1))also reduced the phytoavailability of Cd by 73–85%in the roots,57–83%in the shoots,and 81–90%in grains of wheat crop.Thus,it is affirmed that incorporation of FYM(5–10 ton ha^(-1))performed better to enhance wheat growth and yield by remediating Cd.Thus,the application of FYM(5–10 ton ha^(-1))reduced the toxicity induced by Cd to plants by declining its uptake and translocation as compared to all other applied organic amendments to immobilize Cd under sandy alkaline polluted soil. 展开更多
关键词 Cadmium toxicity mitigation chlorophyll attributes MORPHOMETRY yield attributes CEREAL
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部