Selecting a proper initial input for Iterative Learning Control (ILC) algorithms has been shown to offer faster learning speed compared to the same theories if a system starts from blind. Iterative Learning Control is...Selecting a proper initial input for Iterative Learning Control (ILC) algorithms has been shown to offer faster learning speed compared to the same theories if a system starts from blind. Iterative Learning Control is a control technique that uses previous successive projections to update the following execution/trial input such that a reference is followed to a high precision. In ILC, convergence of the error is generally highly dependent on the initial choice of input applied to the plant, thus a good choice of initial start would make learning faster and as a consequence the error tends to zero faster as well. Here in this paper, an upper limit to the initial choice construction for the input signal for trial 1 is set such that the system would not tend to respond aggressively due to the uncertainty that lies in high frequencies. The provided limit is found in term of singular values and simulation results obtained illustrate the theory behind.展开更多
<div style="text-align:justify;"> <span style="font-family:Verdana;">Iterative learning control is a controlling tool developed to overcome periodic disturbances acting on repetitive sy...<div style="text-align:justify;"> <span style="font-family:Verdana;">Iterative learning control is a controlling tool developed to overcome periodic disturbances acting on repetitive systems. State-feedback ILC controller was designed based on the use of the small gain theorem. Stability conditions were reported in the case of past error and current error feedback schemes based on Singular values. Disturbances acting on the load of the system w</span><span style="font-family:Verdana;">ere </span><span style="font-family:Verdana;">reported for the case of past error feedforward only which kept the investigation of the current error feedback as an open question. This paper develops </span><span style="font-family:Verdana;">a comparison between the past error feedforward and current error feedback schemes disturbance conditions in singular values. As a result, the conditions found highly support the use of the past error over the current error feedback.</span> </div>展开更多
Repetitive Control (RC) designed with state feedback that includes past error feedforward and current error feedback schemes for linear time-invariant systems is reintroduced. Periodic disturbances are common within r...Repetitive Control (RC) designed with state feedback that includes past error feedforward and current error feedback schemes for linear time-invariant systems is reintroduced. Periodic disturbances are common within repetitive systems and can be represented with a time-delay model. The proposed design focuses on isolating the disturbance model and finding the overall transfer function around the delay model. The use of the small gain theorem around the delay model assures disturbance accommodation if stability conditions are achieved. This paper reintroduces the designed RC controller within the state feedback in the presence of both past error and current error structures. Robustness conditions are investigated and set to enhance system performance in the presence of modelling mismatch, which represents the novel contribution in this paper. Simulations demonstrate the advantages of the robust conditions obtained while improving system performance for dynamic perturbations.展开更多
文摘Selecting a proper initial input for Iterative Learning Control (ILC) algorithms has been shown to offer faster learning speed compared to the same theories if a system starts from blind. Iterative Learning Control is a control technique that uses previous successive projections to update the following execution/trial input such that a reference is followed to a high precision. In ILC, convergence of the error is generally highly dependent on the initial choice of input applied to the plant, thus a good choice of initial start would make learning faster and as a consequence the error tends to zero faster as well. Here in this paper, an upper limit to the initial choice construction for the input signal for trial 1 is set such that the system would not tend to respond aggressively due to the uncertainty that lies in high frequencies. The provided limit is found in term of singular values and simulation results obtained illustrate the theory behind.
文摘<div style="text-align:justify;"> <span style="font-family:Verdana;">Iterative learning control is a controlling tool developed to overcome periodic disturbances acting on repetitive systems. State-feedback ILC controller was designed based on the use of the small gain theorem. Stability conditions were reported in the case of past error and current error feedback schemes based on Singular values. Disturbances acting on the load of the system w</span><span style="font-family:Verdana;">ere </span><span style="font-family:Verdana;">reported for the case of past error feedforward only which kept the investigation of the current error feedback as an open question. This paper develops </span><span style="font-family:Verdana;">a comparison between the past error feedforward and current error feedback schemes disturbance conditions in singular values. As a result, the conditions found highly support the use of the past error over the current error feedback.</span> </div>
文摘Repetitive Control (RC) designed with state feedback that includes past error feedforward and current error feedback schemes for linear time-invariant systems is reintroduced. Periodic disturbances are common within repetitive systems and can be represented with a time-delay model. The proposed design focuses on isolating the disturbance model and finding the overall transfer function around the delay model. The use of the small gain theorem around the delay model assures disturbance accommodation if stability conditions are achieved. This paper reintroduces the designed RC controller within the state feedback in the presence of both past error and current error structures. Robustness conditions are investigated and set to enhance system performance in the presence of modelling mismatch, which represents the novel contribution in this paper. Simulations demonstrate the advantages of the robust conditions obtained while improving system performance for dynamic perturbations.