期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Fluid identification and effective fracture prediction based on frequency-dependent AVOAz inversion for fractured reservoirs 被引量:5
1
作者 muhammad ajaz Fang Ouyang +3 位作者 Gui-Hai Wang Shuang-Lian Liu Li-Xin Wang Jian-Guo Zhao 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1069-1085,共17页
Fluid and effective fracture identification in reservoirs is a crucial part of reservoir prediction.The frequency-dependent AVO inversion algorithms have proven to be effective for identifying fluid through its disper... Fluid and effective fracture identification in reservoirs is a crucial part of reservoir prediction.The frequency-dependent AVO inversion algorithms have proven to be effective for identifying fluid through its dispersion property.However,the conventional frequency-dependent AVO inversion algorithms based on Smith&Gidlow and Aki&Richards approximations do not consider the acquisition azimuth of seismic data and neglect the effect of seismic anisotropic dispersion in the actual medium.The aligned fractures in the subsurface medium induce anisotropy.The seismic anisotropy should be considered while accounting for the seismic dispersion properties through fluid-saturated fractured reservoirs.Anisotropy in such reservoirs is frequency-related due to wave-induced fluid-flow(WIFF)between interconnected fractures and pores.It can be used to identify fluid and effective fractures(fluid-saturated)by using azimuthal seismic data via anisotropic dispersion properties.In this paper,based on Rüger’s equation,we derived an analytical expression in the frequency domain for the frequencydependent AVOAz inversion in terms of fracture orientation,dispersion gradient of isotropic background rock,anisotropic dispersion gradient,and the dispersion at a normal incident angle.The frequency-dependent AVOAz equation utilizes azimuthal seismic data and considers the effect of both isotropic and anisotropic dispersion.Reassigned Gabor Transform(RGT)is used to achieve highresolution frequency division data.We then propose the frequency-dependent AVOAz inversion method to identify fluid and characterize effective fractures in fractured porous reservoirs.Through application to high-qualified seismic data of dolomite and carbonate reservoirs,the results show that the method is useful for identifying fluid and effective fractures in fluid-saturated fractured rocks. 展开更多
关键词 Frequency-dependent AVOAz inversion P-wave anisotropy Seismic dispersion Effective fractures Fluid identification
原文传递
Multiplicity dependence of the freezeout parameters in high energy hadron-hadron collisions 被引量:1
2
作者 muhammad ajaz Majid Shehzad +7 位作者 muhammad Waqas Haifa I.Alrebdi Mohammad Ayaz Ahmad Antalov Jagnandan Shawn Jagnandan Murad Badshah Jalal Hasan Baker Abdul Mosawir Quraishi 《Chinese Physics C》 SCIE CAS CSCD 2024年第5期124-133,共10页
We examined the transverse momentum(pT)spectra of various identified particles,encompassing both light-flavored and strange hadrons(π++π−,K++K−,p+p¯,ϕ,K0s,Λ+Λ¯,Ξ−+Ξ¯+,andΩ−+Ω¯+),across diff... We examined the transverse momentum(pT)spectra of various identified particles,encompassing both light-flavored and strange hadrons(π++π−,K++K−,p+p¯,ϕ,K0s,Λ+Λ¯,Ξ−+Ξ¯+,andΩ−+Ω¯+),across different multiplicity classes in proton-proton collisions(p-p)at a center-of-mass energy of s√=7 TeV.Utilizing the Tsallis and Hagedorn models,parameters relevant to the bulk properties of nuclear matter were extracted.Both models exhibit good agreement with experimental data.In our analyses,we observed a consistent decrease in the effective temperature(T)for the Tsallis model and the kinetic or thermal freeze-out temperature(T0)for the Hagedorn model,as we transitioned from higher multiplicity(class-I)to lower multiplicity(class-X).This trend is attributed to the diminished energy transfer in higher multiplicity classes.Additionally,we observed that the transverse flow velocity(βT)experiences a decline from class-I to class-X.The normalization constant,which represents the multiplicity of produced particles,was observed to decrease as we moved toward higher multiplicity classes.While the effective and kinetic freeze-out temperatures,as well as the transverse flow velocity,show a mild dependency on multiplicity for lighter particles,this dependency becomes more pronounced for heavier particles.The multiplicity parameter for heavier particles was observed to be smaller than that of lighter particles,indicating a greater abundance of lighter hadrons compared to heavier ones.Various particle species were observed to undergo decoupling from the fireball at distinct temperatures:lighter particles exhibit lower temperatures,while heavier ones show higher temperatures,thereby supporting the concept of multiple freeze-out scenarios.Moreover,we identified a positive correlation between the kinetic freeze-out temperature and transverse flow velocity,a scenario where particles experience stronger collective motion at a higher freeze-out temperature.The reason for this positive correlation is that,as the multiplicity increases,more energy is transferred into the system.This increased energy causes greater excitation and pressure within the system,leading to a quick expansion. 展开更多
关键词 multiplicity dependence collective properties thermal energy
原文传递
Dependence of thermodynamic quantities at freeze-out on pseudorapidity and collision energy in p-p collisions at LHC energies
3
作者 Murad Badshah Yahia A.H.Obaidat +3 位作者 Haifa I.Alrebdi M.Waqas muhammad ajaz Refka Ghodhbani 《Chinese Physics C》 SCIE CAS CSCD 2024年第10期235-246,共12页
The transverse momentum distributions of charged hadrons produced in proton-proton collisions at center-of-mass energies(√s)of 0.9 TeV and 2.36 TeV,as measured by the CMS detector at the Large Hadron Collider(LHC),ha... The transverse momentum distributions of charged hadrons produced in proton-proton collisions at center-of-mass energies(√s)of 0.9 TeV and 2.36 TeV,as measured by the CMS detector at the Large Hadron Collider(LHC),have been analyzed within various pseudorapidity classes utilizing the thermodynamically consistent Tsallis distribution.The fitting procedure resulted in the key parameters,namely,effective temperature(T),non-extensivity parameter(q),and kinetic freezeout volume(V).Additionally,the mean transverse momentum(<pT>)and initial temperature(T_(i))of the particle source are determined through the fit function and string percolation method,respectively.An alternative method is employed to calculate the kinetic freezeout temperature(T_(0))and transverse flow velocity(β_(T))from T.Furthermore,thermodynamic quantities at the freezeout,including energy density(ε),particle density(n),entropy density(s),pressure(P),and squared speed of sound(C_(s)^(2)),are computed using the extracted T and q.It is also observed that,with a decrease in pseudorapidity,all thermodynamic quantities except V and q increase.This trend is attributed to greater energy transfer along the mid pseudorapidity.q increases towards higher values of pseudorapidity,indicating that particles close to the beam axis are far from equilibrium.Meanwhile,V remains nearly independent of pseudorapidity.The excitation function of these parameters(q)shows a direct(inverse)correlation with collision energy.The ε,n,s,and P show a strong dependence on collision energies at low pseudorapidities.Explicit verification of the thermodynamic inequality ε≥3P suggests the formation of a highly dense droplet-like Quark-Gluon Plasma(QGP).Additionally,the inequality T_(i)>T>T_(0)is explicitly confirmed,aligning with the evolution of the produced fireball. 展开更多
关键词 charged hadrons tsallis statistics effective temperature non-extensivity parameter pseudorapidity kinetic freeze-out stage multiple freeze-out scenario QGP QCD matter squared speed of sound
原文传递
Effect of the jet production on pseudorapidity, transverse momentum and transverse mass distributions of charged particles produced in pp-collisions at Tevatron energy
4
作者 Ali Zaman Mais Suleymanov +1 位作者 muhammad ajaz Kamal Hussain Khan 《Chinese Physics C》 SCIE CAS CSCD 2015年第7期6-11,共6页
We investigate the effects of jet production on the following parameters: pseudorapidity, transverse momentum and transverse mass distributions of secondary charged particles produced in pp-collisions at 1.8 Te V,usi... We investigate the effects of jet production on the following parameters: pseudorapidity, transverse momentum and transverse mass distributions of secondary charged particles produced in pp-collisions at 1.8 Te V,using the HIJING code. These distributions are analyzed for the whole range and for six selected regions of the polar angle as a function of the different number of jets. The obtained simulation results for these parameters are interpreted and discussed in connection to the increase observed in the multiplicity of secondary charged particles as a result of its multi-jet dependence, and are also discussed in comparison with the experimental results from the CDF Collaboration. 展开更多
关键词 jet production charged particles in pp-interactions HIJING pseudorapidity transverse momentum transverse mass
原文传递
Comparative analysis of jet and underlying event properties across various models as a function of charged particle multiplicity at 7 TeV
5
作者 Maryam Waqar Haifa I.Alrebdi +2 位作者 muhammad Waqas K.S.Al-mugren muhammad ajaz 《Chinese Physics C》 SCIE CAS CSCD 2024年第9期118-125,共8页
In this study,a comprehensive analysis of jets and underlying events as a function of charged particle multiplicity in proton-proton(pp)collisions at a center-of-mass energy of √s=7 TeV is conducted.Various Monte Car... In this study,a comprehensive analysis of jets and underlying events as a function of charged particle multiplicity in proton-proton(pp)collisions at a center-of-mass energy of √s=7 TeV is conducted.Various Monte Carlo(MC)event generators,including Pythia8.308,EPOS 1.99,EPOSLHC,EPOS4_(Hydro),and EPOS4_(noHydro),are employed to predict particle production.The predictions from these models are compared with experimental data from the CMS collaboration.The charged particles are categorized into those associated with underlying events and those linked to jets,and the analysis is restricted to charged particles with|η|<2.4 and p_T>0.25 GeV/c.By comparing the MC predictions with CMS data,we find that EPOS4_(Hydro),EPOSLHC,and Pythia8 consistently reproduce the experimental results for all charged particles,underlying events,intrajets,and leading charged particles.For charged jet rates with p_T^(ch.jet)>5 GeV/c,EPOS4_(Hydro)and Pythia8 perform exceptionally well.In the case of charged jet rates with p_T^(ch.jet)→30 GeV/c,EPOSLHC reproduces satisfactorily good results,whereas EPOS4 Hydro exhibits good agreement with the data at higher charged particle multiplicities compared to the other models.This can be attributed to the conversion of energy into flow when"Hydro=on"leading to an increase in multiplicity.The EPOSLHC model describes the data better owing to the new collective flow effects,correlated flow treatment,and parameterization compared to EPOS 1.99.However,the examination of the jet p_T spectrum and normalized charged p_T density reveals that EPOS4_(Hydro),EPOS4_(noHydro),and EPOSLHC exhibit good agreement with the experimental results,whereas Pythia8 and EPOS 1.99 do not perform as well owing to the lack of correlated flow treatment. 展开更多
关键词 Monte Carlo models underlying event jets charged particle multiplicity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部