期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
High resolution facies architecture and digital outcrop modeling of the Sandakan formation sandstone reservoir, Borneo:Implications for reservoir characterization and flow simulation 被引量:4
1
作者 Numair A.Siddiqui mu.ramkumar +4 位作者 Abdul Hadi A.Rahman Manoj J.Mathew M.Santosh Chow W.Sum David Menier 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第3期957-971,共15页
Advances in photogrammetry have eased the acquisition of high-resolution digital information from outcrops, enabling faster, non-destructive data capturing and improved reservoir modeling. Geocellular models for flow ... Advances in photogrammetry have eased the acquisition of high-resolution digital information from outcrops, enabling faster, non-destructive data capturing and improved reservoir modeling. Geocellular models for flow dynamics with in the virtual outcrop in siliciclastic deposits at different sets of sandstone facies architecture remain, however, a challenge. Digital maps of bedding, lithological contrast, spatial-temporal variations of bedding and permeability characteristics make it more easy to understand flow tortuosity in a particular architecture. An ability to precisely model these properties can improve reservoir characterization and flow modeling at different scales. Here we demonstrate the construction of realistic 2 D sandstone facies based models for a pragmatic simulation of flow dynamics using a combination of digital point clouds dataset acquired from LiDAR and field investigation of the Sandakan Formation, Sabah, Borneo.Additionally, we present methods for enhancing the accuracy of outcrop digital datasets for producing high resolution flow simulation. A well-exposed outcrop from the Sandakan Formation, Sabah, northwest Borneo having a lateral extent of 750 m was chosen in order to implement our research approach. Sandstone facies and its connectivity are well constrained by outcrop observations, data from air-permeability measurements, bilinear interpolation of permeability, grid construction and water vector analysis for flow dynamics.These proportions were then enumerated in terms of static digital outcrop model(DOM) and facies model based on sandstone facies bedding characteristics. Flow simulation of water vector analysis through each of the four sandstone facies types show persistent spatial correlation of permeability that align with either cross-bedded orientation or straight with more dispersion high quality sandstone(porosity 21.25%-41.2%and permeability 1265.20-5986.25 mD) and moderate quality sandstone(porosity 10.44%-28.75% and permeability 21.44-1023.33 mD). Whereas, in more heterolithic sandstone(wavy-to flaser-bedded and bioturbated sandstone), lateral variations in permeability show spatially non-correlated patterns over centimeters to tens of meters with mostly of low quality sandstone(porosity 3.4%-12.31% and permeability < 1 mD to 3.21 mD). These variations reflect the lateral juxtaposition in flow dynamics. It has also been resulted that the vertical connectivity and heterogeneities in terms of flow are mostly pragmatic due to the interconnected sandstone rather than the quality of sandstone. 展开更多
关键词 SILICICLASTIC SANDSTONE FACIES Connectivity HETEROGENEITY DIGITAL outcrop model Flow dynamics
在线阅读 下载PDF
High Ba-Sr adakitic charnockite suite from the Nagercoil Block,southern India:Vestiges of Paleoproterozoic arc and implications for Columbia to Gondwana 被引量:2
2
作者 Pin Gao M.Santosh +2 位作者 Cheng-Xue Yang Sanghoon Kwon mu.ramkumar 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期577-596,共20页
The Nagercoil block is the southernmost crustal segment of the Southern Granulite Terrane(SGT)in India and is mainly composed of charnockitic rocks and felsic gneisses(charnockite suite).In this study,we present petro... The Nagercoil block is the southernmost crustal segment of the Southern Granulite Terrane(SGT)in India and is mainly composed of charnockitic rocks and felsic gneisses(charnockite suite).In this study,we present petrologic,geochemical,zircon U-Pb,REE,and Hf isotopic studies on the charnockites and leucogneiss from the Nagercoil block.Based on field investigations and petrologic studies,the charnockites can be divided into garnet-bearing and garnet-absent anhydrous granulite facies rocks with orthopyroxene.The charnockites and leucogneiss show transition from adakites to non-adakitic magmatic rocks,with enrichment in LREEs(light rare earth elements)and LILEs(large ion lithophile elements),and depletion in HREEs(heavy rare earth elements)and HFSEs(high field strength elements).Some of the charnockites and the leucogneiss show typical HSA(high silica adakite)characters,(high SiO_(2),Al_(2)O_(3),Ba-Sr,La/Yb,and Sr/Y).The HSA is considered to have formed from the interaction of slab derived melts and peridotitic mantle wedge.The high Ba-Sr features were possibly inherited from subducted oceanic crust melting under high thermal gradient during Precambrian.The magmas were underplated and subjected to fractional crystallization.Zircon grains from the charnockite and leucogneiss show zoned magmatic cores surrounded by structureless metamorphic rims.Magmatic zircon grains from the charnockites show ages ranging from 1983±8.8 Ma to 2046±14 Ma,and the metamorphic domains show an age range of 502±14 Ma to 547±8.7 Ma.Zircon from the leucogneiss yielded magmatic and metamorphic ages of 1860±20 Ma and 575.6±8.8 Ma.Both charnockites and leucogneiss show two prominent age peaks at 1987 Ma and 568 Ma.The REE data of the zircon grains show LREE depletion and HREE enrichment,with the metamorphic grains showing more depletion in HREE.Zircon Hf isotopic data of the magmatic cores of zircon grains from the charnockite yieldedε_(Hf)(t)values from-1.17 to 0.46 with T_(DM)and T_(DM)~C and age peaks at 2392 Ma and 2638 Ma,suggesting Neoarchean to Paleoproterozoic juvenile sources.We suggest that the high Ba-Sr adakitic charnockite suite from the Nagercoil block formed in a Paleoproterozoic magmatic arc setting during the assembly of the Columbia supercontinent,and underwent high-grade metamorphism associated with the amalgamation of the Gondwana supercontinent during the late Neoproterozoic-Cambrian.Our study provides new insights into the vestiges of Columbia fragments within the Gondwana assembly with two distinct cycles of crustal evolution. 展开更多
关键词 CHARNOCKITE Adakitic rocks High Ba-Sr granitoids Geochemistry and zircon geochronology Nagercoil block Columbia and Gondwana supercontinents
在线阅读 下载PDF
Episodic dolomitization of Paleozoic limestones in the Kinta Valley,Malaysia:Implications on porosity evolution and reservoir properties
3
作者 Poon Xin Hui mu.ramkumar +2 位作者 R.Nagarajan Manoj J.Mathew T.F.Ng 《Energy Geoscience》 2021年第4期298-307,共10页
Carbonates undergo a variety of physical,mineralogical,chemical changes during depositional and postdepositional stages that are of interest to exploration geologists and sedimentologists.World over,about 60%of hydroc... Carbonates undergo a variety of physical,mineralogical,chemical changes during depositional and postdepositional stages that are of interest to exploration geologists and sedimentologists.World over,about 60%of hydrocarbon reserves occur in carbonates with the dominant proportion associated with dolomitic reservoirs,in particular fault-associated dolomites which appear to be proven hydrocarbon reservoirs.Dolomitization as the critical diagenetic process thus plays an important role in determining reservoir characteristics and in designing exploration strategies.The buried Paleozoic dolomites exhibit relatively higher porosity than their counterparts,Paleozoic limestones.Fault-associated dolomites are usually targets of hydrocarbon exploration due to their good reservoir quality.High heterogeneity in carbonate reservoirs due to varied porosity types and distribution makes reservoir characterization a daunting task.However,the key elements that control porosity development and evolution in these dolomites remain debatable.Studying the influence of multiphase dolomitization,associated diagenetic events,hydrothermal alteration and their causative thermo-tectonic events on porosity evolution and reservoir quality is essential to understanding the critical processes and controlling factors that result in diverse impacts on reservoir quality.In this paper,an attempt is made to characterize dolomitization in homogeneous carbonate mud and its relationship with porosity evolution and reservoir property.In the field,six facies types excluding host limestone are recognized,which are in turn characterized into seven petrographically recognizable phases,namely the host limestone,early replacement dolomite,sucrosic dolomite,metamorphosed dolomite,late replacement dolomite,brecciated limestone and dolomite and late stage calcite.Mineralogical analyses reveal the dominance of stoichiometric dolomites,followed by calcareous dolomites and magnesium calcites.Among all the field-based facies and petrographic phases,the sucrosic dolomites show appreciable porosity within a range from 4%to 8%,whereas the other phases show either nil or insignificant porosity under megascopic and petrographic observations.Our study confirms that in the process of dolomitization that substantially modifies porosity,dolomitic crystal morphologies play a significant role in enhancing or reducing the porosity. 展开更多
关键词 DOLOMITIZATION Porosity evolution PALEOZOIC Kinta Valley MALAYSIA
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部