We prove that any C1-stable weakly shadowable volume-preserving diffeomorphism defined on a compact manifold displays a dominated splitting E ⊕ F. Moreover, both E and F are volume-hyperbolic. Finally, we prove the v...We prove that any C1-stable weakly shadowable volume-preserving diffeomorphism defined on a compact manifold displays a dominated splitting E ⊕ F. Moreover, both E and F are volume-hyperbolic. Finally, we prove the version of this result for divergence-free vector fields. As a consequence, in low dimensions, we obtain global hyperbolicity.展开更多
Let ACD(M, SL(d,R)) denote the pairs (f, A) so that f∈ A C Diff^1(M) is a C^1-Anosov transitive diffeomorphisms and A is an SL(d,R) cocycle dominated with respect to f. We prove that open and densely in ACD...Let ACD(M, SL(d,R)) denote the pairs (f, A) so that f∈ A C Diff^1(M) is a C^1-Anosov transitive diffeomorphisms and A is an SL(d,R) cocycle dominated with respect to f. We prove that open and densely in ACD(M, SL(d,R)), in appropriate topologies, the pair (f,A) has simple spectrum with respect to the unique maximal entropy measure μf. Then, we prove prevalence of trivial spectrum near the dynamical cocycle of an area-preserving map and also for generic cocycles in AUtLeb(M) × LP(M, SL(d, R)).展开更多
基金supported by National Funds through FCT-"Fundao para a Ciênciae a Tecnologia"(Grant No.PEst-OE/MAT/UI0212/2011)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,Korea(Grant No.2011-0007649)
文摘We prove that any C1-stable weakly shadowable volume-preserving diffeomorphism defined on a compact manifold displays a dominated splitting E ⊕ F. Moreover, both E and F are volume-hyperbolic. Finally, we prove the version of this result for divergence-free vector fields. As a consequence, in low dimensions, we obtain global hyperbolicity.
基金Supported by FCT-Fundao para a Ciência e a Tecnologia and CNPq-Brazil(Grant No.PEst-OE/MAT/UI0212/2011)
文摘Let ACD(M, SL(d,R)) denote the pairs (f, A) so that f∈ A C Diff^1(M) is a C^1-Anosov transitive diffeomorphisms and A is an SL(d,R) cocycle dominated with respect to f. We prove that open and densely in ACD(M, SL(d,R)), in appropriate topologies, the pair (f,A) has simple spectrum with respect to the unique maximal entropy measure μf. Then, we prove prevalence of trivial spectrum near the dynamical cocycle of an area-preserving map and also for generic cocycles in AUtLeb(M) × LP(M, SL(d, R)).