期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Patagonian toothfish-inspired aluminum coordination hydrogel sensors for real-time rainfall monitoring
1
作者 Xiaoyu Guan Yanxia Zhu +9 位作者 Jianxun Luo Xuechuan Wang Hao Gong Mohammed A Abosheasha Bingyuan Zhang Sai Zheng Dongping Li Qingxin Han motoki ueda Yoshihiro Ito 《International Journal of Extreme Manufacturing》 2025年第4期417-433,共17页
Compared with traditional rain gauges and weather radars,hydrogel flexible electronic sensor capable of responding directly to rainfall events with promptness and authenticity,shows great prospects in real-time rainfa... Compared with traditional rain gauges and weather radars,hydrogel flexible electronic sensor capable of responding directly to rainfall events with promptness and authenticity,shows great prospects in real-time rainfall monitoring.Aluminum coordination hydrogel(Al-HG),one of the most qualified sensors suitable for rainfall monitoring,however,is currently impeded from widespread application by its weak mechanical properties due to the low binding strength between Al^(3+)and functional ligands.Herein,inspired by the antifreeze proteins(AFPs)that protect those Patagonian toothfishes by strongly binding to ice crystals at freezing temperatures,a low temperature-induced strategy is introduced to promote more and stronger ligand carboxyls firm combination with Al^(3+),thus forming a high-coordinated structure to deal with this challenge.Expectedly,the whole mechanical performance of the product Al-HG_(F1/F2) obtained by the low temperature-induced strategy is improved.For example,the tensile fracture toughness and the maximum compressive stress of Al-HG_(F1/F2) are 1.66 MJ·m^(-3) and 12.01 MPa,approximately twice those of the sample Al-HGF3/F0 obtained by traditional soaking method(0.86 MJ·m^(-3) and 7.38 MPa,respectively).Coupled with its good biocompatibility,ionic conductivity,and sensing ability,Al-HG_(F1/F2) demonstrates promising application for real-time rainfall monitoring in discrepant rainfall intensities,different zones,and even under extreme environments.This work aims to offer a stride toward mechanically robust aluminum coordination hydrogel sensors for real-time rainfall monitoring as well as provide insights into flood prevention and disaster mitigation. 展开更多
关键词 aluminum coordination hydrogel rainfall monitoring mechanical performance flexible electronic sensor BINDING
在线阅读 下载PDF
Rational design of natural leather-based water evaporator for electricity generation and functional applications
2
作者 Bingyuan Zhang Xiaoyu Guan +10 位作者 Qingxin Han Haoxiang Guo Sai Zheng Xuhui Sun Afnan H.El-Gowily Mohammed A.Abosheasha Yanxia Zhu motoki ueda Meng An Haojun Fan Yoshihiro Ito 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期129-144,共16页
In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricat... In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricate hydrovoltaic devices,the limitations of high costs,inconvenient storage and transport,low environmental benefits,and unadaptable shape have restricted their wide applications.Here,an electricity generator driven by water evaporation has been engineered based on natural biomass leather with inherent properties of good moisture permeability,excellent wettability,physicochemical stability,flexibility,and biocompatibility.Including numerous nano/microchannels together with rich oxygen-bearing functional groups,the natural leather-based water evaporator,Leather_(Emblic-NPs-SA/CB),could continuously produce electricity even staying outside,achieving a maximum output voltage of∼3 V with six-series connection.Furthermore,the leather-based water evaporator has enormous potential for use as a flexible self-powered electronic floor and seawater demineralizer due to its sensitive pressure sensing ability as well as its excellent photothermal conversion efficiency(96.3%)and thus fast water evaporation rate(2.65 kg m^(−2)h^(−1)).This work offers a new and functional material for the construction of hydrovoltaic devices to harvest the sustained green energy from water evaporation in arbitrary ambient environments,which shows great promise in their widespread applications. 展开更多
关键词 Energy conversion Water evaporation-induced electricity Functional leather Flexible self-powered sensor DESALINATION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部