In this article,we looked at metallenes,a novel class of two-dimensional(2D)metals that are attracting interest in the energy and catalysis sectors.Catalysis is one area where their exceptional physicochemical and ele...In this article,we looked at metallenes,a novel class of two-dimensional(2D)metals that are attracting interest in the energy and catalysis sectors.Catalysis is one area where their exceptional physicochemical and electrical characteristics might be useful.Metallenes are unique because they include several metal atoms that are not in a coordinated bond.This makes them more active and improves their atomic uti-lization,which in turn increases their catalytic potential.This article delves into the potential of two-dimensional metals as electrocatalysts for carbon dioxide reduction,fuel oxidation,oxygen evolution,and oxygen reduction reactions in the context of sustainable energy conversion.Owing to the exception-ally high surface-to-volume ratio,large surface area as well as their optimized atomic use efficiency,2D materials defined by atomic layers are crucial for surface-related sustainable energy applications.Due to its exceptional properties,such as high conductivity and the ability to enhance the exposure of active metal sites,2D metallenes have recently attracted a lot of interest for use in catalysis,electronics,and energy-related applications.With their highly mobility,adjustable surface states,and electrical struc-tures that can be fine-tuned,2D metallenes are promising nanostructure materials for use in energy con-version with the sustainable applications.展开更多
The cosmic-ray particles of TeV-regime, outside the solar system are blocked in their way to the Earth, a deficit of particles is observed corresponding to the location of the Sun known as the Sun shadow. The center o...The cosmic-ray particles of TeV-regime, outside the solar system are blocked in their way to the Earth, a deficit of particles is observed corresponding to the location of the Sun known as the Sun shadow. The center of the Sun shadow is shifted from its nominal position due to the presence of magnetic fields in interplanetary space,and this shift is used indirectly as a probe to study the solar magnetic field that is difficult to measure otherwise.A detailed Monte Carlo simulation of galactic cosmic-ray propagation in the Earth-Sun system is carried out to disentangle the cumulative effects of solar, interplanetary and geomagnetic fields. The shadowing effects and the displacements results of the Sun shadow in different solar activities are reproduced and discussed.展开更多
基金funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R24),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiafunding from the Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1444).
文摘In this article,we looked at metallenes,a novel class of two-dimensional(2D)metals that are attracting interest in the energy and catalysis sectors.Catalysis is one area where their exceptional physicochemical and electrical characteristics might be useful.Metallenes are unique because they include several metal atoms that are not in a coordinated bond.This makes them more active and improves their atomic uti-lization,which in turn increases their catalytic potential.This article delves into the potential of two-dimensional metals as electrocatalysts for carbon dioxide reduction,fuel oxidation,oxygen evolution,and oxygen reduction reactions in the context of sustainable energy conversion.Owing to the exception-ally high surface-to-volume ratio,large surface area as well as their optimized atomic use efficiency,2D materials defined by atomic layers are crucial for surface-related sustainable energy applications.Due to its exceptional properties,such as high conductivity and the ability to enhance the exposure of active metal sites,2D metallenes have recently attracted a lot of interest for use in catalysis,electronics,and energy-related applications.With their highly mobility,adjustable surface states,and electrical struc-tures that can be fine-tuned,2D metallenes are promising nanostructure materials for use in energy con-version with the sustainable applications.
基金Supported by the National Natural Science Foundation of China under Grant No 11675187the Specialized Research Fund for State Key Laboratoriesthe CAS-TWAS President Fellowship Programme
文摘The cosmic-ray particles of TeV-regime, outside the solar system are blocked in their way to the Earth, a deficit of particles is observed corresponding to the location of the Sun known as the Sun shadow. The center of the Sun shadow is shifted from its nominal position due to the presence of magnetic fields in interplanetary space,and this shift is used indirectly as a probe to study the solar magnetic field that is difficult to measure otherwise.A detailed Monte Carlo simulation of galactic cosmic-ray propagation in the Earth-Sun system is carried out to disentangle the cumulative effects of solar, interplanetary and geomagnetic fields. The shadowing effects and the displacements results of the Sun shadow in different solar activities are reproduced and discussed.