期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multiple Periodic Solutions for Some Classes of First-Order Hamiltonian Systems 被引量:6
1
作者 mohsen timoumi 《Applied Mathematics》 2011年第7期846-853,共8页
Considering a decomposition R2N=A⊕B of R2N , we prove in this work, the existence of at least (1+dimA) geometrically distinct periodic solutions for the first-order Hamiltonian system Jx'(t)+H'(t,x(t))+e(t)=0... Considering a decomposition R2N=A⊕B of R2N , we prove in this work, the existence of at least (1+dimA) geometrically distinct periodic solutions for the first-order Hamiltonian system Jx'(t)+H'(t,x(t))+e(t)=0 when the Hamiltonian H(t,u+v) is periodic in (t,u) and its growth at infinity in v is at most like or faster than |v|a, 0≤ae is a forcing term. For the proof, we use the Least Action Principle and a Generalized Saddle Point Theorem. 展开更多
关键词 HAMILTONIAN Systems Partial NONLINEARITY Multiple PERIODIC Solutions Critical Point Theory
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部