Improved rice lines were developed frome three parents with the resistance or tolerance to bacterial leaf blight,blast and drought stress,respectively,using single-,double-and three-way crosses.The improved lines were...Improved rice lines were developed frome three parents with the resistance or tolerance to bacterial leaf blight,blast and drought stress,respectively,using single-,double-and three-way crosses.The improved lines were assessed for agro-morphological and yield traits under non-drought stress(NS)and reproductive-stage drought stress(RS)treatments.The mean comparison of traits measured between parent plants and progenies(improved lines)were similar,and there were significant and non-significant differences among the parents and improved lines(genotypes)under NS and RS.Smilarly,there was significant and non-significant differences in the interaction among both parent varieties and improved lines for NS and RS.Cluster and 3D-model of principal component analysis did not generate categorical clusters according to crossing methods,and there were no exclusive crossing method inclined variations under the treatments.The improved lines were high-yielding,disease resistant,and drought-tolerant compared with their parents.All the crossing methods were good for this crop improvement program without preference to any,despite the number of genes introgressed.展开更多
Tomato(Solanum lycopersicum L.)belonging to the family Solanaceae is the second most consumed and cultivated vegetable globally.Since the ancient time of its domestication,thousands of cultivated tomato varieties have...Tomato(Solanum lycopersicum L.)belonging to the family Solanaceae is the second most consumed and cultivated vegetable globally.Since the ancient time of its domestication,thousands of cultivated tomato varieties have been developed targeting an array of aspects.Among which breeding for yield and yield-related traits are mostly focused.Cultivated tomato is extremely genetically poor and hence it is a victim for several biotic and abiotic stresses.Among the biotic stresses,the impact of viral diseases is critical all over tomato cultivating areas.Improvement of tomato still largely rely on conventional methods worldwide while molecular approaches,particularly Marker Assisted Selection(MAS)has become popular across the globe as a fast,low cost and precise tool which is essential in present day plant breeding.In this review paper,breeding tomato for high yield and viral disease resistance,particularly to tomato yellow leaf curl virus disease(TYLCVD)using conventional and molecular approaches will be discussed.Lining up of this set of information will be useful to those who are interested in tomato variety development with high yielding and TYLCVD resistance.展开更多
基金supported by the Higher Institution Centre of Excellence(HiCoE)Research Grant(Grant No.6369105)。
文摘Improved rice lines were developed frome three parents with the resistance or tolerance to bacterial leaf blight,blast and drought stress,respectively,using single-,double-and three-way crosses.The improved lines were assessed for agro-morphological and yield traits under non-drought stress(NS)and reproductive-stage drought stress(RS)treatments.The mean comparison of traits measured between parent plants and progenies(improved lines)were similar,and there were significant and non-significant differences among the parents and improved lines(genotypes)under NS and RS.Smilarly,there was significant and non-significant differences in the interaction among both parent varieties and improved lines for NS and RS.Cluster and 3D-model of principal component analysis did not generate categorical clusters according to crossing methods,and there were no exclusive crossing method inclined variations under the treatments.The improved lines were high-yielding,disease resistant,and drought-tolerant compared with their parents.All the crossing methods were good for this crop improvement program without preference to any,despite the number of genes introgressed.
基金the Long-term Research Grant Scheme(LRGS),Ministry of Higher Education,Malaysia,Project No.LRGS/1/2019/UKM/5,Vote No.6300242 for the financial support to conduct activities on this research program.
文摘Tomato(Solanum lycopersicum L.)belonging to the family Solanaceae is the second most consumed and cultivated vegetable globally.Since the ancient time of its domestication,thousands of cultivated tomato varieties have been developed targeting an array of aspects.Among which breeding for yield and yield-related traits are mostly focused.Cultivated tomato is extremely genetically poor and hence it is a victim for several biotic and abiotic stresses.Among the biotic stresses,the impact of viral diseases is critical all over tomato cultivating areas.Improvement of tomato still largely rely on conventional methods worldwide while molecular approaches,particularly Marker Assisted Selection(MAS)has become popular across the globe as a fast,low cost and precise tool which is essential in present day plant breeding.In this review paper,breeding tomato for high yield and viral disease resistance,particularly to tomato yellow leaf curl virus disease(TYLCVD)using conventional and molecular approaches will be discussed.Lining up of this set of information will be useful to those who are interested in tomato variety development with high yielding and TYLCVD resistance.