As the amount of medical images transmitted over networks and kept on online servers continues to rise,the need to protect those images digitally is becoming increasingly important.However,due to the massive amounts o...As the amount of medical images transmitted over networks and kept on online servers continues to rise,the need to protect those images digitally is becoming increasingly important.However,due to the massive amounts of multimedia and medical pictures being exchanged,low computational complexity techniques have been developed.Most commonly used algorithms offer very little security and require a great deal of communication,all of which add to the high processing costs associated with using them.First,a deep learning classifier is used to classify records according to the degree of concealment they require.Medical images that aren’t needed can be saved by using this method,which cuts down on security costs.Encryption is one of the most effective methods for protecting medical images after this step.Confusion and dispersion are two fundamental encryption processes.A new encryption algorithm for very sensitive data is developed in this study.Picture splitting with image blocks is nowdeveloped by using Zigzag patterns,rotation of the image blocks,and random permutation for scrambling the blocks.After that,this research suggests a Region of Interest(ROI)technique based on selective picture encryption.For the first step,we use an active contour picture segmentation to separate the ROI from the Region of Background(ROB).Permutation and diffusion are then carried out using a Hilbert curve and a Skew Tent map.Once all of the blocks have been encrypted,they are combined to create encrypted images.The investigational analysis is carried out to test the competence of the projected ideal with existing techniques.展开更多
Recent economic growth and development have considerably raised energy consumption over the globe.Electric load prediction approaches become essential for effective planning,decision-making,and contract evaluation of ...Recent economic growth and development have considerably raised energy consumption over the globe.Electric load prediction approaches become essential for effective planning,decision-making,and contract evaluation of the power systems.In order to achieve effective forecasting outcomes with minimumcomputation time,this study develops an improved whale optimization with deep learning enabled load prediction(IWO-DLELP)scheme for energy storage systems(ESS)in smart grid platform.The major intention of the IWO-DLELP technique is to effectually forecast the electric load in SG environment for designing proficient ESS.The proposed IWO-DLELP model initially undergoes pre-processing in two stages namely min-max normalization and feature selection.Besides,partition clustering approach is applied for the decomposition of data into distinct clusters with respect to distance and objective functions.Moreover,IWO with bidirectional gated recurrent unit(BiGRU)model is applied for the prediction of load and the hyperparameters are tuned by the use of IWO algorithm.The experiment analysis reported the enhanced results of the IWO-DLELP model over the recent methods interms of distinct evaluation measures.展开更多
文摘As the amount of medical images transmitted over networks and kept on online servers continues to rise,the need to protect those images digitally is becoming increasingly important.However,due to the massive amounts of multimedia and medical pictures being exchanged,low computational complexity techniques have been developed.Most commonly used algorithms offer very little security and require a great deal of communication,all of which add to the high processing costs associated with using them.First,a deep learning classifier is used to classify records according to the degree of concealment they require.Medical images that aren’t needed can be saved by using this method,which cuts down on security costs.Encryption is one of the most effective methods for protecting medical images after this step.Confusion and dispersion are two fundamental encryption processes.A new encryption algorithm for very sensitive data is developed in this study.Picture splitting with image blocks is nowdeveloped by using Zigzag patterns,rotation of the image blocks,and random permutation for scrambling the blocks.After that,this research suggests a Region of Interest(ROI)technique based on selective picture encryption.For the first step,we use an active contour picture segmentation to separate the ROI from the Region of Background(ROB).Permutation and diffusion are then carried out using a Hilbert curve and a Skew Tent map.Once all of the blocks have been encrypted,they are combined to create encrypted images.The investigational analysis is carried out to test the competence of the projected ideal with existing techniques.
文摘Recent economic growth and development have considerably raised energy consumption over the globe.Electric load prediction approaches become essential for effective planning,decision-making,and contract evaluation of the power systems.In order to achieve effective forecasting outcomes with minimumcomputation time,this study develops an improved whale optimization with deep learning enabled load prediction(IWO-DLELP)scheme for energy storage systems(ESS)in smart grid platform.The major intention of the IWO-DLELP technique is to effectually forecast the electric load in SG environment for designing proficient ESS.The proposed IWO-DLELP model initially undergoes pre-processing in two stages namely min-max normalization and feature selection.Besides,partition clustering approach is applied for the decomposition of data into distinct clusters with respect to distance and objective functions.Moreover,IWO with bidirectional gated recurrent unit(BiGRU)model is applied for the prediction of load and the hyperparameters are tuned by the use of IWO algorithm.The experiment analysis reported the enhanced results of the IWO-DLELP model over the recent methods interms of distinct evaluation measures.