期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Correction:A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion
1
作者 Khadija Manzoor Fiaz Majeed +5 位作者 Ansar Siddique Talha Meraj Hafiz Tayyab Rauf mohammed a.el-meligy mohamed Sharaf Abd Elatty E.Abd Elgawad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1459-1459,共1页
In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Ela... In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Elatty E.Abd Elgawad Computers,Materials&Continua,2022,Vol.70,No.1,pp.1617–1630.DOI:10.32604/cmc.2022.018621,URL:https://www.techscience.com/cmc/v70n1/44361,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”. 展开更多
关键词 FUSION SKIN FEATURE
在线阅读 下载PDF
Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier 被引量:1
2
作者 JunWang Linxi Zhang +4 位作者 Hao Zhang Funan Peng mohammed a.el-meligy mohamed Sharaf Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1281-1299,共19页
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly... The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently. 展开更多
关键词 Multi-objective evolutionary optimization algorithm decision variables grouping extreme point pareto frontier
在线阅读 下载PDF
A Lightweight Approach for Skin Lesion Detection Through Optimal Features Fusion
3
作者 Khadija Manzoor Fiaz Majeed +5 位作者 Ansar Siddique Talha Meraj Hafiz Tayyab Rauf mohammed a.el-meligy mohamed Sharaf Abd Elatty E.Abd Elgawad 《Computers, Materials & Continua》 SCIE EI 2022年第1期1617-1630,共14页
Skin diseases effectively influence all parts of life.Early and accurate detection of skin cancer is necessary to avoid significant loss.The manual detection of skin diseases by dermatologists leads to misclassificati... Skin diseases effectively influence all parts of life.Early and accurate detection of skin cancer is necessary to avoid significant loss.The manual detection of skin diseases by dermatologists leads to misclassification due to the same intensity and color levels.Therefore,an automated system to identify these skin diseases is required.Few studies on skin disease classification using different techniques have been found.However,previous techniques failed to identify multi-class skin disease images due to their similar appearance.In the proposed study,a computer-aided framework for automatic skin disease detection is presented.In the proposed research,we collected and normalized the datasets from two databases(ISIC archive,Mendeley)based on six Basal Cell Carcinoma(BCC),Actinic Keratosis(AK),Seborrheic Keratosis(SK),Nevus(N),Squamous Cell Carcinoma(SCC),and Melanoma(M)common skin diseases.Besides,segmentation is performed using deep Convolutional Neural Networks(CNN).Furthermore,three types of features are extracted from segmented skin lesions:ABCD rule,GLCM,and in-depth features.AlexNet transfer learning is used for deep feature extraction,while a support vector machine(SVM)is used for classification.Experimental results show that SVM outperformed other studies in terms of accuracy,as AK disease achieved 100%accuracy,BCC 92.7%,M 95.1%,N 97.8%,SK 93.1%,SCC 91.4%with a global accuracy of 95.4%. 展开更多
关键词 AlexNet CNN GLCM SVMS skin disease
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部