Iron oxide nanoparticles were synthesized by precipitation method and supported on activated carbon. The catalyst thus obtained was characterized by various physicochemical techniques, and used for the liquid phase de...Iron oxide nanoparticles were synthesized by precipitation method and supported on activated carbon. The catalyst thus obtained was characterized by various physicochemical techniques, and used for the liquid phase dehydrogenation/oxidation of octanol in a batch reactor at various temperatures in the range 30 °C - 60 °C. Maximum conversion of octanol to octanal was attained at 60°C in 30 min. However, with longer reaction time, the selectivity of the catalyst was found to change in favor of octene as a product. The catalyst could be recovered and reused multiple times without any decline in its catalytic performance.展开更多
文摘Iron oxide nanoparticles were synthesized by precipitation method and supported on activated carbon. The catalyst thus obtained was characterized by various physicochemical techniques, and used for the liquid phase dehydrogenation/oxidation of octanol in a batch reactor at various temperatures in the range 30 °C - 60 °C. Maximum conversion of octanol to octanal was attained at 60°C in 30 min. However, with longer reaction time, the selectivity of the catalyst was found to change in favor of octene as a product. The catalyst could be recovered and reused multiple times without any decline in its catalytic performance.