Peri-implant mucositis is the mucosal inflammatory lesion around implants that does not result in the loss of the peri-implant bone that supports them.Furthermore,Peri-implantitis(PI),a medical condition affecting the...Peri-implant mucositis is the mucosal inflammatory lesion around implants that does not result in the loss of the peri-implant bone that supports them.Furthermore,Peri-implantitis(PI),a medical condition affecting the tissues surrounding dental implants,is characterized by inflammation and a progressive loss of supporting bone.Of the several types of Nanoparticles(NPs),a lot of research has been done on the effects of Metal NPs(MNPs)-such as those made of silver,zinc,and copper-and non-MNPs-such as those made of Graphene Oxide(GO),Carbon-based NPs(CNPs),and Chitosan(CS)NPs-on peri-implant microorganisms.These NPs serve as antibacterial and anti-inflammatory agents and cover dental implants.Furthermore,Peri-implant Disease(PID)and many others in the oral and dental domains may be effectively treated using Green Synthesis(GS)NPs enabled by various biological sources.Compared to chemical and physical processes,GS offers several benefits,including non-toxicity,pollution-free production,environmental friendliness,cost-effectiveness,and sustainability.Hence,the significance of GS NPs,both MNPs and non-MNPs,was first explored in this work.Using eco-friendly methods,we then reviewed the PID-related effects of various MNPs and non-MNPs synthesized.NPs,both MNPs and non-MNPs,have great potential as a future therapy for PI,and the environmentally friendly manufacturing process may play a significant role in this development.Consequently,we have looked into the benefits and drawbacks of this treatment method in terms of clinical practice in our study.Research from reputable sources,such as PubMed and Google Scholar,was used to compile the papers included in the review article.Researchers may make progress in producing MNPs and non-MNPs NPs for treating PI by adopting GS.展开更多
文摘Peri-implant mucositis is the mucosal inflammatory lesion around implants that does not result in the loss of the peri-implant bone that supports them.Furthermore,Peri-implantitis(PI),a medical condition affecting the tissues surrounding dental implants,is characterized by inflammation and a progressive loss of supporting bone.Of the several types of Nanoparticles(NPs),a lot of research has been done on the effects of Metal NPs(MNPs)-such as those made of silver,zinc,and copper-and non-MNPs-such as those made of Graphene Oxide(GO),Carbon-based NPs(CNPs),and Chitosan(CS)NPs-on peri-implant microorganisms.These NPs serve as antibacterial and anti-inflammatory agents and cover dental implants.Furthermore,Peri-implant Disease(PID)and many others in the oral and dental domains may be effectively treated using Green Synthesis(GS)NPs enabled by various biological sources.Compared to chemical and physical processes,GS offers several benefits,including non-toxicity,pollution-free production,environmental friendliness,cost-effectiveness,and sustainability.Hence,the significance of GS NPs,both MNPs and non-MNPs,was first explored in this work.Using eco-friendly methods,we then reviewed the PID-related effects of various MNPs and non-MNPs synthesized.NPs,both MNPs and non-MNPs,have great potential as a future therapy for PI,and the environmentally friendly manufacturing process may play a significant role in this development.Consequently,we have looked into the benefits and drawbacks of this treatment method in terms of clinical practice in our study.Research from reputable sources,such as PubMed and Google Scholar,was used to compile the papers included in the review article.Researchers may make progress in producing MNPs and non-MNPs NPs for treating PI by adopting GS.