In the present study,we concentrate on finding the dual solutions of biomagnetic fluid namely blood flow and heat transfer along with magnetic particles over a two dimensional shrinking cylinder in the presence of a m...In the present study,we concentrate on finding the dual solutions of biomagnetic fluid namely blood flow and heat transfer along with magnetic particles over a two dimensional shrinking cylinder in the presence of a magnetic dipole.To make the results physically realistic,stability analysis is also carried out in this study so that we realized which solution is stable and which is not.The governing partial equations are converted into ordinary differential equations by using similarity transformations and the numerical solution is calculated by applying bvp4c function technique in MATLAB software.The effects of different physical parameters are plotted graphically and discussed according to the outcomes of results.From the present study we observe that ferromagnetic interaction parameter had a great influenced on fluid velocity and temperature distributions.It is also found from the current analysis that the first and second solutions of shrinking cylinder obtained only when we applied particular ranges values of suction parameter.The most important characteristics part of study is to analyze the skin friction coefficient and rate of heat transfer which also covered in this analysis.It reveals that both skin friction coefficient and rate of heat transfer are reduced with rising values of ferromagnetic number.A comparison has also been made to make the solution feasible.展开更多
This study explores free convective heat transfer in an electrically conducting nanofluid flow over a moving semi-infinite flat plate under the influence of an induced magnetic field and viscous dissipation.The veloci...This study explores free convective heat transfer in an electrically conducting nanofluid flow over a moving semi-infinite flat plate under the influence of an induced magnetic field and viscous dissipation.The velocity and magnetic field vectors are aligned at a distance from the plate.The Spectral Relaxation Method(SRM)is used to numerically solve the coupled nonlinear partial differential equations,analyzing the effects of the Eckert number on heat and mass transfer.Various nanofluids containing Cu,Ag,Al_(2)O_(3),and TiO_(2) nanoparticles are examined to assess how external magnetic fields influence fluid behavior.Key parameters,including the nanoparticle volume fraction ϕ,magnetic parameter M,magnetic Prandtl number Prm,and Eckert number Ec,are evaluated for their impact on velocity,induced magnetic field,and heat transfer.Results indicate that increasing the magnetic parameter reduces velocity and magnetic field components in alumina-water nanofluids,while a higher nanoparticle volume fraction enhances the thermal boundary layer.Greater viscous dissipation(Ec)increases temperature,and Al_(2)O_(3) nanofluids exhibit higher speeds than Cu,Ag,and TiO_(2) due to density differences.Silver-water nanofluids,with their higher density,move more slowly.The SRM results closely align with those from Maple,confirming the method’s accuracy.展开更多
This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governi...This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governing partial differential equations(PDEs)are converted into ordinary differential equations(ODEs)using the similarity transformation.The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software.It was found that dual solutions exist for the shrinking parameter values up to a certain range.The numerical results obtained are compared,and the comparison showed a good agreement with the existing results in the literature.The governing parameters’effect on the velocity,temperature and nanoparticle fraction fields as well as the skin friction coefficient,the local Nusselt number and the Sherwood number are represented graphically and analyzed.The variation of the velocity,temperature and concentration increase with the increase in the suction and magnetic field parameters.It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it.展开更多
文摘In the present study,we concentrate on finding the dual solutions of biomagnetic fluid namely blood flow and heat transfer along with magnetic particles over a two dimensional shrinking cylinder in the presence of a magnetic dipole.To make the results physically realistic,stability analysis is also carried out in this study so that we realized which solution is stable and which is not.The governing partial equations are converted into ordinary differential equations by using similarity transformations and the numerical solution is calculated by applying bvp4c function technique in MATLAB software.The effects of different physical parameters are plotted graphically and discussed according to the outcomes of results.From the present study we observe that ferromagnetic interaction parameter had a great influenced on fluid velocity and temperature distributions.It is also found from the current analysis that the first and second solutions of shrinking cylinder obtained only when we applied particular ranges values of suction parameter.The most important characteristics part of study is to analyze the skin friction coefficient and rate of heat transfer which also covered in this analysis.It reveals that both skin friction coefficient and rate of heat transfer are reduced with rising values of ferromagnetic number.A comparison has also been made to make the solution feasible.
文摘This study explores free convective heat transfer in an electrically conducting nanofluid flow over a moving semi-infinite flat plate under the influence of an induced magnetic field and viscous dissipation.The velocity and magnetic field vectors are aligned at a distance from the plate.The Spectral Relaxation Method(SRM)is used to numerically solve the coupled nonlinear partial differential equations,analyzing the effects of the Eckert number on heat and mass transfer.Various nanofluids containing Cu,Ag,Al_(2)O_(3),and TiO_(2) nanoparticles are examined to assess how external magnetic fields influence fluid behavior.Key parameters,including the nanoparticle volume fraction ϕ,magnetic parameter M,magnetic Prandtl number Prm,and Eckert number Ec,are evaluated for their impact on velocity,induced magnetic field,and heat transfer.Results indicate that increasing the magnetic parameter reduces velocity and magnetic field components in alumina-water nanofluids,while a higher nanoparticle volume fraction enhances the thermal boundary layer.Greater viscous dissipation(Ec)increases temperature,and Al_(2)O_(3) nanofluids exhibit higher speeds than Cu,Ag,and TiO_(2) due to density differences.Silver-water nanofluids,with their higher density,move more slowly.The SRM results closely align with those from Maple,confirming the method’s accuracy.
基金the Fundamental Research Grant Scheme(FRGS)under a grant number of FRGS/1/2018/STG06/UNIMAP/02/3 from the Ministry of Education Malaysia。
文摘This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governing partial differential equations(PDEs)are converted into ordinary differential equations(ODEs)using the similarity transformation.The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software.It was found that dual solutions exist for the shrinking parameter values up to a certain range.The numerical results obtained are compared,and the comparison showed a good agreement with the existing results in the literature.The governing parameters’effect on the velocity,temperature and nanoparticle fraction fields as well as the skin friction coefficient,the local Nusselt number and the Sherwood number are represented graphically and analyzed.The variation of the velocity,temperature and concentration increase with the increase in the suction and magnetic field parameters.It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it.