期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Comparison of effect of SiC and MoS2 on wear behavior of Al matrix composites 被引量:11
1
作者 mohammad ROUHI mohammad MOAZAMI-GOUDARZI mohammad ardestani 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第6期1169-1183,共15页
In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering o... In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering of the corresponding powder mixtures. The microstructural evaluations showed a dense microstructure which were in good agreement with the result of density and hardness measurements. The results of pin on disk wear tests performed against an AISI 52100 steel pin at a constant load and sliding velocity showed that there was a critical content for both types of the reinforcements at which the lowest wear rate was obtained, i.e. 10 vol.% and 2 vol.%, respectively,for Al/SiC and Al/MoS2 composites. However,the lowest wear rate and friction of coefficient were attained for Al/10 SiC/2 MoS2 hybrid composite. According to the scanning electron microscope observations, the predominant wear mechanism was changed from adhesion to abrasion mostly whenMoS2 particles were incorporated in the pure aluminum. Mild delamination was identified as the main wear mechanism for Al/SiC and Al/SiC/MoS2 composites. The frictional traces and worn surfaces of Al/SiC/MoS2 composites approached to those of Al/SiC composites,indicating the dominant role of SiC particles in tribological behavior of the hybrid composites. 展开更多
关键词 Al/SiC/MoS2 composites microstructure wear mechanism FRICTION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部