期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Evaluating machine learning methods for predicting groundwater fluctuations using GRACE satellite in arid and semi-arid regions
1
作者 mobin eftekhari Abbas Khashei-Siuki 《Journal of Groundwater Science and Engineering》 2025年第1期5-21,共17页
This study aims to evaluate the effectiveness of machine learning techniques for predicting groundwater fluctuations in arid and semi-arid regions using data from the Gravity Recovery and Climate Experiment satellite ... This study aims to evaluate the effectiveness of machine learning techniques for predicting groundwater fluctuations in arid and semi-arid regions using data from the Gravity Recovery and Climate Experiment satellite mission.The primary objective is to develop accurate predictive models for groundwa-ter level changes by leveraging the unique capabilities of GRACE satellite data in conjunction with advanced machine learning algorithms.Three widely-used machine learning models,namely DT,SVM and RF,were employed to analyze and model the relationship between GRACE satellite data and groundwater fluctuations in South Khorasan Province,Iran.The study utilized 151 months of GRACE data spanning from 2002 to 2017,which were correlated with piezometer well data available in the study area.The JPL 2 model was selected based on its strong correlation(R=0.9368)with the observed data.The machine learn-ing models were trained and validated using a 70/30 split of the data,and their performance was evaluated 2 using various statistical metrics,including RMSE,R and NSE.The results demonstrated the suitability of machine learning approaches for modeling groundwater fluctuations using GRACE satellite data.The DT 2 model exhibited the best performance during the calibration stage,with an R value of 0.95,RMSE of 20.655,and NSE of 0.96.The SVM and RF models achieved R values of 0.79 and 0.65,and NSE values of 0.86 and 0.71,respectively.For the prediction stage,the DT model maintained its high efficiency,with an 2 RMSE of 1.48,R of 0.87,and NSE of 0.90,indicating its robustness in predicting future groundwater fluc-tuations using GRACE data.The study highlights the potential of machine learning techniques,particularly Decision Trees,in conjunction with GRACE satellite data,for accurate prediction and monitoring of groundwater fluctuations in arid and semi-arid regions.The findings demonstrate the effectiveness of the DT model in capturing the complex relationships between GRACE data and groundwater dynamics,provid-ing reliable predictions and insights for sustainable groundwater management strategies. 展开更多
关键词 Decision Trees Support Vector Machines Random Forests GRACE Satellite Groundwater level
在线阅读 下载PDF
基于DRASTIC-LU参数和数据驱动模型的地下水硝酸盐脆弱性分区 被引量:1
2
作者 Seyed Ahmad Eslaminezhad mobin eftekhari Mohammad Akbari 《北京工业大学学报》 CAS CSCD 北大核心 2021年第12期1338-1359,共22页
从开采、管理和控制不同地区的污染的角度,评估地下水脆弱性以确定这些资源的优先次序是重要的.研究的目的是基于DRASTIC-LU参数以及空间和非空间数据驱动的方法来估算Birjand平原含水层的地下水(硝酸盐质量浓度)脆弱性.研究提出新的组... 从开采、管理和控制不同地区的污染的角度,评估地下水脆弱性以确定这些资源的优先次序是重要的.研究的目的是基于DRASTIC-LU参数以及空间和非空间数据驱动的方法来估算Birjand平原含水层的地下水(硝酸盐质量浓度)脆弱性.研究提出新的组合方法来确定(Birjand平原含水层)地下水脆弱性分区中合适的DRASTICLU参数,即将具有指数和双平方核的地理加权回归(geographically weighted regression,GWR)和人工神经网络(artificial neural network,ANN)与二进制粒子群优化算法(binary particle swarm optimization,BPSO)相结合.计算结果为:对于ANN、指数核GWR和双平方核GWR的适应度函数(1-R^(2))的最佳值分别为0.1060、0.0745和0.0065,这表明双平方核的兼容性比其他方法更高.研究表明DRASTIC-LU参数对研究区域的硝酸盐质量浓度估计的地下水脆弱性有显著影响. 展开更多
关键词 地下水脆弱性 DRASTIC-LU参数 地理加权回归 人工神经网络 二进制粒子群优化算法 数据驱动模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部