The aggressive nature and high mortality rate of lung cancer underscore the imperative need for early diagnosis of the disease.Thus,aminopeptidase N(APN),a potential biomarker for lung cancer,should be thoroughly inve...The aggressive nature and high mortality rate of lung cancer underscore the imperative need for early diagnosis of the disease.Thus,aminopeptidase N(APN),a potential biomarker for lung cancer,should be thoroughly investigated in this context.This report describes the development of HA-apn,a novel near-infrared fluorescent probe,specifically engineered for the sensitive detection of endogenous APN.Characterized by its high selectivity,straightforward molecular architecture,and suitable optical properties,including a long-wavelength emission at 835 nm and a large Stokes shift of 285 nm,HA-apn had high efficacy in identifying overexpressed APN in tumor cells,which shows its potential in pinpointing malignancies.To further validate its applicability and effectiveness in facilitating the direct and enhanced visualization of pulmonary alterations,an in situ lung cancer mouse model was employed.Notably,HAapn was applied for in vivo imaging of APN activity in the lung cancer mouse model receiving the probe through aerosol inhalation,and rapid and precise diagnostic results were achieved within 30min postadministration.Overall,HA-apn can be applied as an effective,non-intrusive tool for the rapid and accurate detection of pulmonary conditions.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22004046 and 22074052)the Science and Technology Developing Foundation of Jilin Province of China(Nos.20240404044ZP,20230101033JC and 20220505015ZP).
文摘The aggressive nature and high mortality rate of lung cancer underscore the imperative need for early diagnosis of the disease.Thus,aminopeptidase N(APN),a potential biomarker for lung cancer,should be thoroughly investigated in this context.This report describes the development of HA-apn,a novel near-infrared fluorescent probe,specifically engineered for the sensitive detection of endogenous APN.Characterized by its high selectivity,straightforward molecular architecture,and suitable optical properties,including a long-wavelength emission at 835 nm and a large Stokes shift of 285 nm,HA-apn had high efficacy in identifying overexpressed APN in tumor cells,which shows its potential in pinpointing malignancies.To further validate its applicability and effectiveness in facilitating the direct and enhanced visualization of pulmonary alterations,an in situ lung cancer mouse model was employed.Notably,HAapn was applied for in vivo imaging of APN activity in the lung cancer mouse model receiving the probe through aerosol inhalation,and rapid and precise diagnostic results were achieved within 30min postadministration.Overall,HA-apn can be applied as an effective,non-intrusive tool for the rapid and accurate detection of pulmonary conditions.