We have designed,assembled,and tested a 4-MA,60-ns fast linear transformer driver(LTD),which is the first operating generator featuring multiple LTD modules connected in parallel.The LTD-based accelerator comprises si...We have designed,assembled,and tested a 4-MA,60-ns fast linear transformer driver(LTD),which is the first operating generator featuring multiple LTD modules connected in parallel.The LTD-based accelerator comprises six modules in parallel,each of which has ten-stage cavities stacked in series.The six LTD modules are connected to a water tank of diameter 6 m via a 3-m-long impedance-matched deionized waterinsulated coaxial transmission line.In the water tank,the electrical pulses are transmitted down by six horizontal tri-plate transmission lines.A 2.1-m-diameter two-level vacuum insulator stack is utilized to separate the deionized water region from the vacuum region.In the vacuum,the currents are further transported downstream by a two-level magnetically insulated transmission-line and then converged through four post-hole convolutes.Plasma radiation loads or bremsstrahlung electron beam diodes serve as loads that are expected to generate intense soft X rays or warm X rays.The machine is 3.2 m in height and 22 m in outer diameter,including support systems such as a high-voltage charge supply,magnetic core reset system,trigger system,and support platform for inner stalk installation and maintenance.A total of 1440 individual±100-kV multi-gap spark switches and 2880 individual 100-kV capacitors are employed in the accelerator.A total of 12 fiberoptic laser-controlled trigger generators combining photoconductive and traditional gas spark switch technologies are used to realize the synchronous discharge of the more than 1000 gas switches.At an LTD charge voltage of±85 kV,the accelerator stores an initial energy of about 300 kJ and is expected to deliver a current of 3–5 MA into various loads.To date,the LTD facility has shot into a thick-walled aluminum liner load and a reflex triode load.With a thick-walled aluminum liner of inductance 1.81 nH,a current with peak up to 4.1 MA and rise time(10%–90%)of about 60 ns has been achieved.The current transport efficiency from the insulator stack to the liner load approaches 100%during peak times.The LTD accelerator has been used to drive reflex triode loads generating warm X rays with high energy fluence and large radiation area.It has been demonstrated that this LTD is a promising and high-efficiency prime pulsed power source suitable for use in constructing the next generation of large-scale accelerators with currents of tens of megaamperes.展开更多
Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells a...Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells and/or biomaterials as major modulators of the spinal cord injury microenvironment.Here,we aimed to investigate the role of microenvironment modulation by cell graft on functional recovery after spinal cord injury.Induced neural stem cells reprogrammed from human peripheral blood mononuclear cells,and/or thrombin plus fibrinogen,were transplanted into the lesion site of an immunosuppressed rat spinal cord injury model.Basso,Beattie and Bresnahan score,electrophysiological function,and immunofluorescence/histological analyses showed that transplantation facilitates motor and electrophysiological function,reduces lesion volume,and promotes axonal neurofilament expression at the lesion core.Examination of the graft and niche components revealed that although the graft only survived for a relatively short period(up to 15 days),it still had a crucial impact on the microenvironment.Altogether,induced neural stem cells and human fibrin reduced the number of infiltrated immune cells,biased microglia towards a regenerative M2 phenotype,and changed the cytokine expression profile at the lesion site.Graft-induced changes of the microenvironment during the acute and subacute stages might have disrupted the inflammatory cascade chain reactions,which may have exerted a long-term impact on the functional recovery of spinal cord injury rats.展开更多
Integrated water and fertilizer management is important for promoting sustainable development of facility agriculture,and biochar plays an important role in guaranteeing food production,as well as alleviating water sh...Integrated water and fertilizer management is important for promoting sustainable development of facility agriculture,and biochar plays an important role in guaranteeing food production,as well as alleviating water shortages and the overuse of fertilizers.The field experiment had twelve treatments and a control(CK)trial including two irrigation amounts(I1,100%ETm;I2,60%ETm;where ETm is the maximum evapotranspiration),two nitrogen applications(N1,360 kg ha^(−1);N2,120 kg ha^(−1))and three biochar application levels(B1,60 t ha^(−1);B_(2),30 t ha^(−1)and B3,0 t ha^(−1)).A multi-objective synergistic irrigation-nitrogen-biochar application system for improving tomato yield,quality,water and nitrogen use efficiency,and greenhouse emissions was developed by integrating the techniques of experimentation and optimization.First,a coupled irrigation-nitrogen-biochar plot experiment was arranged.Then,tomato yield and fruit quality parameters were determined experimentally to establish the response relationships between irrigation-nitrogen-biochar dosage and yield,comprehensive quality of tomatoes(TCQ),irrigation water use efficiency(IWUE),partial factor productivity of nitrogen(PFPN),and net greenhouse gas emissions(NGE).Finally,a multi-objective dynamic optimization regulation model of irrigation-nitrogen-biochar resource allocation at different growth stages of tomato was constructed which was solved by the fuzzy programming method.The results showed that the application of irrigation and nitrogen to biochar promoted increase in yield,IWUE and PFPN,while it had an inhibitory effect on NGE.In addition,the optimal allocation amounts of water and fertilizer were different under different scenarios.The yield of the S1 scenario increased by 8.31%compared to the B_(1)I_(1)N_(2) treatment;TCQ of the S2 scenario increased by 5.14%compared to the B_(2)I_(2)N_(1) treatment;IWUE of the S3 scenario increased by 10.01%compared to the B1I2N2 treatment;PFPN of the S4 scenario increased by 9.35%compared to the B_(1)I_(1)N_(2) treatment;and NGE of the S5 scenario decreased by 11.23%compared to the B_(2)I1N1 treatment.The optimization model showed that the coordination of multiple objectives considering yield,TCQ,IWUE,PFPN,and NGE increased on average from 4.44 to 69.02%compared to each treatment when the irrigation-nitrogen-biochar dosage was 205.18 mm,186 kg ha^(−1)and 43.31 t ha^(−1),respectively.This study provides a guiding basis for the sustainable management of water and fertilizer in greenhouse tomato production under drip irrigation fertilization conditions.展开更多
Objective The expression of HERG in common bone tumors is scarcely reported and there is a lack of dedicated studies.This study aimed to investigated the expression of HERG in several common musculoskeletal tumors.Met...Objective The expression of HERG in common bone tumors is scarcely reported and there is a lack of dedicated studies.This study aimed to investigated the expression of HERG in several common musculoskeletal tumors.Methods Immunohistochemical staining,RT-PCR,and Western blotting were used to observe HERG expression differences in various tissues and cell lines.Results HERG was differentially expressed in different malignant tumors,both at a differential protein level and localization within tumors.HERG was not expressed in normal bone tissue.The HERG inhibitor E-4031 markedly inhibited the proliferation of osteosarcoma cell lines.Conclusion HERG was highly expressed in malignant tumors.Blocking of HERG can effectively inhibit the proliferation of bone tumors.展开更多
Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after inju...Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after injury,which limits the ability to observe long-term behavioral recovery.Here,we used a severe stroke rat model with 150 minutes of ischemia,which produced severe behavioral deficiencies that persisted at 12 weeks,to study the therapeutic effect of neural stem cells on neural restoration in chronic stroke.Our study showed that stroke model rats treated with human neural stem cells had long-term sustained recovery of motor function,reduced infarction volume,long-term human neural stem cell survival,and improved local inflammatory environment and angiogenesis.We also demonstrated that transplanted human neural stem cells differentiated into mature neurons in vivo,formed stable functional synaptic connections with host neurons,and exhibited the electrophysiological properties of functional mature neurons,indicating that they replaced the damaged host neurons.The findings showed that human fetal-derived neural stem cells had long-term effects for neurological recovery in a model of severe stroke,which suggests that human neural stem cells-based therapy may be effective for repairing damaged neural circuits in stroke patients.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12027811 and 51790524).
文摘We have designed,assembled,and tested a 4-MA,60-ns fast linear transformer driver(LTD),which is the first operating generator featuring multiple LTD modules connected in parallel.The LTD-based accelerator comprises six modules in parallel,each of which has ten-stage cavities stacked in series.The six LTD modules are connected to a water tank of diameter 6 m via a 3-m-long impedance-matched deionized waterinsulated coaxial transmission line.In the water tank,the electrical pulses are transmitted down by six horizontal tri-plate transmission lines.A 2.1-m-diameter two-level vacuum insulator stack is utilized to separate the deionized water region from the vacuum region.In the vacuum,the currents are further transported downstream by a two-level magnetically insulated transmission-line and then converged through four post-hole convolutes.Plasma radiation loads or bremsstrahlung electron beam diodes serve as loads that are expected to generate intense soft X rays or warm X rays.The machine is 3.2 m in height and 22 m in outer diameter,including support systems such as a high-voltage charge supply,magnetic core reset system,trigger system,and support platform for inner stalk installation and maintenance.A total of 1440 individual±100-kV multi-gap spark switches and 2880 individual 100-kV capacitors are employed in the accelerator.A total of 12 fiberoptic laser-controlled trigger generators combining photoconductive and traditional gas spark switch technologies are used to realize the synchronous discharge of the more than 1000 gas switches.At an LTD charge voltage of±85 kV,the accelerator stores an initial energy of about 300 kJ and is expected to deliver a current of 3–5 MA into various loads.To date,the LTD facility has shot into a thick-walled aluminum liner load and a reflex triode load.With a thick-walled aluminum liner of inductance 1.81 nH,a current with peak up to 4.1 MA and rise time(10%–90%)of about 60 ns has been achieved.The current transport efficiency from the insulator stack to the liner load approaches 100%during peak times.The LTD accelerator has been used to drive reflex triode loads generating warm X rays with high energy fluence and large radiation area.It has been demonstrated that this LTD is a promising and high-efficiency prime pulsed power source suitable for use in constructing the next generation of large-scale accelerators with currents of tens of megaamperes.
基金supported by the Stem Cell and Translation National Key Project,No.2016YFA0101403(to ZC)the National Natural Science Foundation of China,Nos.82171250 and 81973351(to ZC)+6 种基金the Natural Science Foundation of Beijing,No.5142005(to ZC)Beijing Talents Foundation,No.2017000021223TD03(to ZC)Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan,No.CIT&TCD20180333(to ZC)Beijing Municipal Health Commission Fund,No.PXM2020_026283_000005(to ZC)Beijing One Hundred,Thousand,and Ten Thousand Talents Fund,No.2018A03(to ZC)the Royal Society-Newton Advanced Fellowship,No.NA150482(to ZC)the National Natural Science Foundation of China for Young Scientists,No.31900740(to SL)。
文摘Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells and/or biomaterials as major modulators of the spinal cord injury microenvironment.Here,we aimed to investigate the role of microenvironment modulation by cell graft on functional recovery after spinal cord injury.Induced neural stem cells reprogrammed from human peripheral blood mononuclear cells,and/or thrombin plus fibrinogen,were transplanted into the lesion site of an immunosuppressed rat spinal cord injury model.Basso,Beattie and Bresnahan score,electrophysiological function,and immunofluorescence/histological analyses showed that transplantation facilitates motor and electrophysiological function,reduces lesion volume,and promotes axonal neurofilament expression at the lesion core.Examination of the graft and niche components revealed that although the graft only survived for a relatively short period(up to 15 days),it still had a crucial impact on the microenvironment.Altogether,induced neural stem cells and human fibrin reduced the number of infiltrated immune cells,biased microglia towards a regenerative M2 phenotype,and changed the cytokine expression profile at the lesion site.Graft-induced changes of the microenvironment during the acute and subacute stages might have disrupted the inflammatory cascade chain reactions,which may have exerted a long-term impact on the functional recovery of spinal cord injury rats.
基金supported by the National Natural Science Foundation of China(52222902 and 52079029)。
文摘Integrated water and fertilizer management is important for promoting sustainable development of facility agriculture,and biochar plays an important role in guaranteeing food production,as well as alleviating water shortages and the overuse of fertilizers.The field experiment had twelve treatments and a control(CK)trial including two irrigation amounts(I1,100%ETm;I2,60%ETm;where ETm is the maximum evapotranspiration),two nitrogen applications(N1,360 kg ha^(−1);N2,120 kg ha^(−1))and three biochar application levels(B1,60 t ha^(−1);B_(2),30 t ha^(−1)and B3,0 t ha^(−1)).A multi-objective synergistic irrigation-nitrogen-biochar application system for improving tomato yield,quality,water and nitrogen use efficiency,and greenhouse emissions was developed by integrating the techniques of experimentation and optimization.First,a coupled irrigation-nitrogen-biochar plot experiment was arranged.Then,tomato yield and fruit quality parameters were determined experimentally to establish the response relationships between irrigation-nitrogen-biochar dosage and yield,comprehensive quality of tomatoes(TCQ),irrigation water use efficiency(IWUE),partial factor productivity of nitrogen(PFPN),and net greenhouse gas emissions(NGE).Finally,a multi-objective dynamic optimization regulation model of irrigation-nitrogen-biochar resource allocation at different growth stages of tomato was constructed which was solved by the fuzzy programming method.The results showed that the application of irrigation and nitrogen to biochar promoted increase in yield,IWUE and PFPN,while it had an inhibitory effect on NGE.In addition,the optimal allocation amounts of water and fertilizer were different under different scenarios.The yield of the S1 scenario increased by 8.31%compared to the B_(1)I_(1)N_(2) treatment;TCQ of the S2 scenario increased by 5.14%compared to the B_(2)I_(2)N_(1) treatment;IWUE of the S3 scenario increased by 10.01%compared to the B1I2N2 treatment;PFPN of the S4 scenario increased by 9.35%compared to the B_(1)I_(1)N_(2) treatment;and NGE of the S5 scenario decreased by 11.23%compared to the B_(2)I1N1 treatment.The optimization model showed that the coordination of multiple objectives considering yield,TCQ,IWUE,PFPN,and NGE increased on average from 4.44 to 69.02%compared to each treatment when the irrigation-nitrogen-biochar dosage was 205.18 mm,186 kg ha^(−1)and 43.31 t ha^(−1),respectively.This study provides a guiding basis for the sustainable management of water and fertilizer in greenhouse tomato production under drip irrigation fertilization conditions.
基金Suppported by a grant from the Key Research and Development Program of Shaanxi Province Project(No.2018YBXM-SF-12-2)
文摘Objective The expression of HERG in common bone tumors is scarcely reported and there is a lack of dedicated studies.This study aimed to investigated the expression of HERG in several common musculoskeletal tumors.Methods Immunohistochemical staining,RT-PCR,and Western blotting were used to observe HERG expression differences in various tissues and cell lines.Results HERG was differentially expressed in different malignant tumors,both at a differential protein level and localization within tumors.HERG was not expressed in normal bone tissue.The HERG inhibitor E-4031 markedly inhibited the proliferation of osteosarcoma cell lines.Conclusion HERG was highly expressed in malignant tumors.Blocking of HERG can effectively inhibit the proliferation of bone tumors.
文摘Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after injury,which limits the ability to observe long-term behavioral recovery.Here,we used a severe stroke rat model with 150 minutes of ischemia,which produced severe behavioral deficiencies that persisted at 12 weeks,to study the therapeutic effect of neural stem cells on neural restoration in chronic stroke.Our study showed that stroke model rats treated with human neural stem cells had long-term sustained recovery of motor function,reduced infarction volume,long-term human neural stem cell survival,and improved local inflammatory environment and angiogenesis.We also demonstrated that transplanted human neural stem cells differentiated into mature neurons in vivo,formed stable functional synaptic connections with host neurons,and exhibited the electrophysiological properties of functional mature neurons,indicating that they replaced the damaged host neurons.The findings showed that human fetal-derived neural stem cells had long-term effects for neurological recovery in a model of severe stroke,which suggests that human neural stem cells-based therapy may be effective for repairing damaged neural circuits in stroke patients.