This study investigates the necessity for space robots to independently exchange their end-effectors due to the contradiction that exists between the requirements of various robots in space missions and the payload ca...This study investigates the necessity for space robots to independently exchange their end-effectors due to the contradiction that exists between the requirements of various robots in space missions and the payload capacity limits of rockets. The results of this study summarize the system requirements for a new end-effector exchange mechanism, including compact size, misalignment tolerance, and regolith tolerance. This is followed by the development of a prototype model with a set of test apparatus. Then the function of the prototype is verified, the prototype is optimized, and the relation between docking force and misalignment is examined through operation tests.展开更多
文摘This study investigates the necessity for space robots to independently exchange their end-effectors due to the contradiction that exists between the requirements of various robots in space missions and the payload capacity limits of rockets. The results of this study summarize the system requirements for a new end-effector exchange mechanism, including compact size, misalignment tolerance, and regolith tolerance. This is followed by the development of a prototype model with a set of test apparatus. Then the function of the prototype is verified, the prototype is optimized, and the relation between docking force and misalignment is examined through operation tests.