期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Automated Patient Discomfort Detection Using Deep Learning 被引量:1
1
作者 Imran Ahmed Iqbal Khan +2 位作者 misbah ahmad Awais Adnan Hanan Aljuaid 《Computers, Materials & Continua》 SCIE EI 2022年第5期2559-2577,共19页
The Internet of Things(IoT)has been transformed almost all fields of life,but its impact on the healthcare sector has been notable.Various IoTbased sensors are used in the healthcare sector and offer quality and safe ... The Internet of Things(IoT)has been transformed almost all fields of life,but its impact on the healthcare sector has been notable.Various IoTbased sensors are used in the healthcare sector and offer quality and safe care to patients.This work presents a deep learning-based automated patient discomfort detection system in which patients’discomfort is non-invasively detected.To do this,the overhead view patients’data set has been recorded.For testing and evaluation purposes,we investigate the power of deep learning by choosing a Convolution Neural Network(CNN)based model.The model uses confidence maps and detects 18 different key points at various locations of the body of the patient.Applying association rules and part affinity fields,the detected key points are later converted into six main body organs.Furthermore,the distance of subsequent key points is measured using coordinates information.Finally,distance and the time-based threshold are used for the classification of movements associated with discomfort or normal conditions.The accuracy of the proposed system is assessed on various test sequences.The experimental outcomes reveal the worth of the proposed system’by obtaining a True Positive Rate of 98%with a 2%False Positive Rate. 展开更多
关键词 Artificial intelligence patient monitoring discomfort detection deep learning
在线阅读 下载PDF
Integrating digital twins and deep learning for medical image analysis in the era of COVID-19
2
作者 Imran AHMED misbah ahmad Gwanggil JEON 《Virtual Reality & Intelligent Hardware》 2022年第4期292-305,共14页
Background Digital twins are virtual representations of devices and processes that capture the physical properties of the environment and operational algorithms/techniques in the context of medical devices and tech-no... Background Digital twins are virtual representations of devices and processes that capture the physical properties of the environment and operational algorithms/techniques in the context of medical devices and tech-nologies.Digital twins may allow healthcare organizations to determine methods of improving medical processes,enhancing patient experience,lowering operating expenses,and extending the value of care.During the present COVID-19 pandemic,various medical devices,such as X-rays and CT scan machines and processes,are constantly being used to collect and analyze medical images.When collecting and processing an extensive volume of data in the form of images,machines and processes sometimes suffer from system failures,creating critical issues for hospitals and patients.Methods To address this,we introduce a digital-twin-based smart healthcare system in-tegrated with medical devices to collect information regarding the current health condition,configuration,and maintenance history of the device/machine/system.Furthermore,medical images,that is,X-rays,are analyzed by using a deep-learning model to detect the infection of COVID-19.The designed system is based on the cascade recurrent convolution neural network(RCNN)architecture.In this architecture,the detector stages are deeper and more sequentially selective against small and close false positives.This architecture is a multi-stage extension of the RCNN model and sequentially trained using the output of one stage for training the other.At each stage,the bounding boxes are adjusted to locate a suitable value of the nearest false positives during the training of the different stages.In this manner,the arrangement of detectors is adjusted to increase the intersection over union,overcoming the problem of overfitting.We train the model by using X-ray images as the model was previously trained on another dataset.Results The developed system achieves good accuracy during the detection phase of COVID-19.The experimental outcomes reveal the efficiency of the detection architecture,which yields a mean average precision rate of 0.94. 展开更多
关键词 Digital twins Deep learning Healthcare COVID-19 Chest X-rays Artificial intelligence
在线阅读 下载PDF
Federated Learning in Convergence ICT:A Systematic Review on Recent Advancements, Challenges, and Future Directions
3
作者 Imran Ahmed misbah ahmad Gwanggil Jeon 《Computers, Materials & Continua》 2025年第12期4237-4273,共37页
The rapid convergence of Information and Communication Technologies(ICT),driven by advancements in 5G/6G networks,cloud computing,Artificial Intelligence(AI),and the Internet of Things(IoT),is reshaping modern digital... The rapid convergence of Information and Communication Technologies(ICT),driven by advancements in 5G/6G networks,cloud computing,Artificial Intelligence(AI),and the Internet of Things(IoT),is reshaping modern digital ecosystems.As massive,distributed data streams are generated across edge devices and network layers,there is a growing need for intelligent,privacy-preserving AI solutions that can operate efficiently at the network edge.Federated Learning(FL)enables decentralized model training without transferring sensitive data,addressing key challenges around privacy,bandwidth,and latency.Despite its benefits in enhancing efficiency,real-time analytics,and regulatory compliance,FL adoption faces challenges,including communication overhead,heterogeneity,security vulnerabilities,and limited edge resources.While recent studies have addressed these issues individually,the literature lacks a unified,cross-domain perspective that reflects the architectural complexity and application diversity of Convergence ICT.This systematic review offers a comprehensive,cross-domain examination of FL within converged ICT infrastructures.The central research question guiding this review is:How can FL be effectively integrated into Convergence ICT environments,and what are the main challenges in implementing FL in such environments,along with possible solutions?We begin with a foundational overview of FL concepts and classifications,followed by a detailed taxonomy of FL architectures,learning strategies,and privacy-preserving mechanisms.Through in-depth case studies,we analyse FL’s application across diverse verticals,including smart cities,healthcare,industrial automation,and autonomous systems.We further identify critical challenges—such as system and data heterogeneity,limited edge resources,and security vulnerabilities—and review state-of-the-art mitigation strategies,including edge-aware optimization,secure aggregation,and adaptive model updates.In addition,we explore emerging directions in FL research,such as energy-efficient learning,federated reinforcement learning,and integration with blockchain,quantum computing,and self-adaptive networks.This review not only synthesizes current literature but also proposes a forward-looking road map to support scalable,secure,and sustainable FL deployment in future ICT ecosystems. 展开更多
关键词 Federated learning(FL) converged ICT edge computing privacy-preserving AI 5G/6G networks Internet of Things(IoT) sustainable AI quantum AI
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部