In this paper an effort has been made to study the general characteristics of slow particles produced in the interactions of 32S-Em at 200 AGeV to extract the information about the mechanism of particle production. Th...In this paper an effort has been made to study the general characteristics of slow particles produced in the interactions of 32S-Em at 200 AGeV to extract the information about the mechanism of particle production. The results have been compared with the experimental results obtained by other workers. The multiplicity distributions of the slow target associated particles (black, grey and heavy tracks) produced by 32S-beam with different targets have been studied. Also several types of correlations among them have been investigated. The variation of the produced particles with projectile mass number and target size has been studied. Also the multiplicity distributions of slow particles with NBD fits are presented and scaling multiplicity distributions of slow particles produced have been studied in order to check the validity of KNO-scaling.展开更多
An attempt has been made to apply the wavelet methodology for the study of the results of the chaotic behavior of multiparticle production in relativistic heavy ion collisions. We reviewed the data that describes the ...An attempt has been made to apply the wavelet methodology for the study of the results of the chaotic behavior of multiparticle production in relativistic heavy ion collisions. We reviewed the data that describes the collisions of relativistic heavy ion for the case η-space in 1-D phase space of variable. We compared the experimental data and UrQMD data using wavelet coherency. We discussed the results of the comparison.展开更多
This work displays a study of the compound multiplicity characteristics of 14.6 and 200 AGeV/c 28Si and 32S-emulsion interactions, where the number of shower and grey particles taken together is termed as compound mul...This work displays a study of the compound multiplicity characteristics of 14.6 and 200 AGeV/c 28Si and 32S-emulsion interactions, where the number of shower and grey particles taken together is termed as compound multiplicity, Nc. It has been found that the average compound multiplicity depends on the mass number of the projectile, Ap, and energy of the projectile. A positive linear dependence of the compound multiplicity on the black, grey, heavy and shower particles has been found. Also the scaling of compound multiplicity distributions produced in these interactions has been studied in order to check the validity of KNO-scaling. A simplified universal function has been used to represent the experimental data. The experimental results have been compared with those obtained by analyzing events generated with the computer code FRITIOF based on Lund Monte Carlo model.展开更多
An attempt has been made to study the multiplicity, angular and pseudo rapidity distributions of relativistic charged particles emerging from the interactions between sulphur and nuclear emulsion nuclei at 200 GeV/nuc...An attempt has been made to study the multiplicity, angular and pseudo rapidity distributions of relativistic charged particles emerging from the interactions between sulphur and nuclear emulsion nuclei at 200 GeV/nucleon. The distributions from 200 AGeV are compared to the corresponding distributions from the predictions of Monte Carlo code FRITIOF samples. The pseudo rapidity distributions in different Nh-intervals translate to the target fragmentation region with increasing target mass. Finally, the scaling of multiplicity distributions of shower particles successfully describes the consequences of KNO scaling.展开更多
文摘In this paper an effort has been made to study the general characteristics of slow particles produced in the interactions of 32S-Em at 200 AGeV to extract the information about the mechanism of particle production. The results have been compared with the experimental results obtained by other workers. The multiplicity distributions of the slow target associated particles (black, grey and heavy tracks) produced by 32S-beam with different targets have been studied. Also several types of correlations among them have been investigated. The variation of the produced particles with projectile mass number and target size has been studied. Also the multiplicity distributions of slow particles with NBD fits are presented and scaling multiplicity distributions of slow particles produced have been studied in order to check the validity of KNO-scaling.
文摘An attempt has been made to apply the wavelet methodology for the study of the results of the chaotic behavior of multiparticle production in relativistic heavy ion collisions. We reviewed the data that describes the collisions of relativistic heavy ion for the case η-space in 1-D phase space of variable. We compared the experimental data and UrQMD data using wavelet coherency. We discussed the results of the comparison.
文摘This work displays a study of the compound multiplicity characteristics of 14.6 and 200 AGeV/c 28Si and 32S-emulsion interactions, where the number of shower and grey particles taken together is termed as compound multiplicity, Nc. It has been found that the average compound multiplicity depends on the mass number of the projectile, Ap, and energy of the projectile. A positive linear dependence of the compound multiplicity on the black, grey, heavy and shower particles has been found. Also the scaling of compound multiplicity distributions produced in these interactions has been studied in order to check the validity of KNO-scaling. A simplified universal function has been used to represent the experimental data. The experimental results have been compared with those obtained by analyzing events generated with the computer code FRITIOF based on Lund Monte Carlo model.
文摘An attempt has been made to study the multiplicity, angular and pseudo rapidity distributions of relativistic charged particles emerging from the interactions between sulphur and nuclear emulsion nuclei at 200 GeV/nucleon. The distributions from 200 AGeV are compared to the corresponding distributions from the predictions of Monte Carlo code FRITIOF samples. The pseudo rapidity distributions in different Nh-intervals translate to the target fragmentation region with increasing target mass. Finally, the scaling of multiplicity distributions of shower particles successfully describes the consequences of KNO scaling.