In the laser–plasma interaction,relativistic soliton formation is an interesting nonlinear phenomenon and important light mode convection in plasmas.Here,it is shown by threedimensional particle-in-cell simulations t...In the laser–plasma interaction,relativistic soliton formation is an interesting nonlinear phenomenon and important light mode convection in plasmas.Here,it is shown by threedimensional particle-in-cell simulations that relativistic toroidal solitons,composed of intense light self-consistently trapped in toroidal plasma cavities,can be produced by azimuthallypolarized relativistic laser pulses in a near-critical underdense plasma.展开更多
As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the lase...As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the laser and hydrocarbon target parameters on proton acceleration with two/threedimensional particle-in-cell simulations.It is found that the resulting two-ion species plasma can generate a multiple peaked charge-separation field that accelerates the protons.In particular,a smaller carbon-to-hydrogen ratio,as well as the thinner and/or lower density of the target,leads to a larger sheath field and thus proton beams with a larger cutoff energy and smoother energy spectrum.These results may be useful in achieving high-flux quasi-monoenergetic proton beams by properly designing the hydrocarbon target.展开更多
Evolution of an electrostatic plasma wave driven by a low-density ultra-relativistic electron beam in dense inhomogeneous plasma is considered. In particular, the wavelength variation as observed at fixed locations in...Evolution of an electrostatic plasma wave driven by a low-density ultra-relativistic electron beam in dense inhomogeneous plasma is considered. In particular, the wavelength variation as observed at fixed locations in the plasma is analyzed in terms of the wave characteristics. It is shown that for a negative density gradient, the observed local wavelength decreases monotonically with time, but for a positive density gradient, it first increases and then decreases with time, accompanied by reversal of the wave phase. However, in both cases the local wavelength eventually decreases with time since Landau damping becomes significant as the wavelength becomes of the order of the plasma Debye length. Results from particle-in-cell simulations agree well with theoretical analyses of the wavelength variation.展开更多
The effect of the polarizations of two counter-propagating relativistic laser pulses interacting with subwavelength thin solid-density foil is investigated.Three-dimensional particle-in-cell simulations and analytical...The effect of the polarizations of two counter-propagating relativistic laser pulses interacting with subwavelength thin solid-density foil is investigated.Three-dimensional particle-in-cell simulations and analytical modelling show that the interaction and resulting transverse instability depend strongly on the polarization directions as well as the intensity distribution of the resultant light field in the foil.The left-and right-handed circularly polarized laser pair with the same phase at the common focal spot in the ultrathin foil leads to the strongest distortion of the foil.The fastest growing mode and maximum growth rate depend mainly on the laser intensity.For all polarization and phase-difference combinations,the instability is weakest when the two laser pulses are exactly out of phase at the common focusing point in the foil.展开更多
The driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar res...The driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar research mostly depends on observations and theoretical models, laboratory experiments based on high-energy density facilities provide the third method for quantitatively comparing astrophysical observations and models with data achieved in experimental settings.In this article, we show laboratory modeling of solar flares and coronal mass ejections by constructing the magnetic reconnection system with two mutually approaching laser-produced plasmas circumfused of self-generated megagauss magnetic fields. Due to the Euler similarity between the laboratory and solar plasma systems, the present experiments demonstrate the morphological reproduction of flares and coronal mass ejections in solar observations in a scaled sense,and confirm the theory and model predictions about the current-sheet-born anomalous plasmoid as the initial stage of coronal mass ejections, and the behavior of moving-away plasmoid stretching the primary reconnected field lines into a secondary current sheet conjoined with two bright ridges identified as solar flares.展开更多
A scheme for generating high-flux angularly uniform proton beams with high laser-to-proton energy conversion efficiency is proposed. Three laser beams are focused on a microwire array attached to a solid-density hemis...A scheme for generating high-flux angularly uniform proton beams with high laser-to-proton energy conversion efficiency is proposed. Three laser beams are focused on a microwire array attached to a solid-density hemispheric target. The laser-driven hot electrons from the front of the microwire hemisphere generate a hot-electron sheath in the hollow behind it, so that the protons on its back are accelerated by target normal sheath acceleration. The accelerated protons are of high flux, as well as angularly and energetically uniform. The scheme should be useful for applications involving warm dense matter, such as isochoric heating and modification of materials, as well as for proton therapy and inertial confinement fusion.展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA17040502)。
文摘In the laser–plasma interaction,relativistic soliton formation is an interesting nonlinear phenomenon and important light mode convection in plasmas.Here,it is shown by threedimensional particle-in-cell simulations that relativistic toroidal solitons,composed of intense light self-consistently trapped in toroidal plasma cavities,can be produced by azimuthallypolarized relativistic laser pulses in a near-critical underdense plasma.
基金the National Key R&D Program of China(No.2016YFA0401100)National Natural Science Foundation of China(Nos.12175154,11875092,and 12005149)+1 种基金the Natural Science Foundation of Top Talent of SZTU(Nos.2019010801001 and 2019020801001)The EPOCH code is used under UK EPSRC contract(EP/G055165/1 and EP/G056803/1).
文摘As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the laser and hydrocarbon target parameters on proton acceleration with two/threedimensional particle-in-cell simulations.It is found that the resulting two-ion species plasma can generate a multiple peaked charge-separation field that accelerates the protons.In particular,a smaller carbon-to-hydrogen ratio,as well as the thinner and/or lower density of the target,leads to a larger sheath field and thus proton beams with a larger cutoff energy and smoother energy spectrum.These results may be useful in achieving high-flux quasi-monoenergetic proton beams by properly designing the hydrocarbon target.
基金supported by the National Key R&D Program of China (No. 2016YFA0401100)National Natural Science Foundation of China (Nos. 12175154, 11875092, and 12005149)the Natural Science Foundation of Top Talent of Shenzhen Technology University (Nos. 2019010801001 and 2019020801001)。
文摘Evolution of an electrostatic plasma wave driven by a low-density ultra-relativistic electron beam in dense inhomogeneous plasma is considered. In particular, the wavelength variation as observed at fixed locations in the plasma is analyzed in terms of the wave characteristics. It is shown that for a negative density gradient, the observed local wavelength decreases monotonically with time, but for a positive density gradient, it first increases and then decreases with time, accompanied by reversal of the wave phase. However, in both cases the local wavelength eventually decreases with time since Landau damping becomes significant as the wavelength becomes of the order of the plasma Debye length. Results from particle-in-cell simulations agree well with theoretical analyses of the wavelength variation.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175310,12275356,12305268,12105362,12375244,12135009 and U22411281)the Natural Science Foundation of Hunan Province(Grant Nos.2021JJ40653,2020JJ5031 and 2025JJ30002)+1 种基金the Scientific Research Foundation of the Hunan Provincial Education Department(Grant No.22B0655)the Hunan Provincial Innovation Foundation for Postgraduates(Grant No.CX20210006)。
文摘The effect of the polarizations of two counter-propagating relativistic laser pulses interacting with subwavelength thin solid-density foil is investigated.Three-dimensional particle-in-cell simulations and analytical modelling show that the interaction and resulting transverse instability depend strongly on the polarization directions as well as the intensity distribution of the resultant light field in the foil.The left-and right-handed circularly polarized laser pair with the same phase at the common focal spot in the ultrathin foil leads to the strongest distortion of the foil.The fastest growing mode and maximum growth rate depend mainly on the laser intensity.For all polarization and phase-difference combinations,the instability is weakest when the two laser pulses are exactly out of phase at the common focusing point in the foil.
基金jointly supported by the National Natural Science Foundation of China (Nos. 11121504, 11074297, 11274152)the CAS project of KJCX2-YWT01the National Basic Research Program of China (No. 2007CB815101)
文摘The driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar research mostly depends on observations and theoretical models, laboratory experiments based on high-energy density facilities provide the third method for quantitatively comparing astrophysical observations and models with data achieved in experimental settings.In this article, we show laboratory modeling of solar flares and coronal mass ejections by constructing the magnetic reconnection system with two mutually approaching laser-produced plasmas circumfused of self-generated megagauss magnetic fields. Due to the Euler similarity between the laboratory and solar plasma systems, the present experiments demonstrate the morphological reproduction of flares and coronal mass ejections in solar observations in a scaled sense,and confirm the theory and model predictions about the current-sheet-born anomalous plasmoid as the initial stage of coronal mass ejections, and the behavior of moving-away plasmoid stretching the primary reconnected field lines into a secondary current sheet conjoined with two bright ridges identified as solar flares.
基金supported by the National Natural Science Foundation of China(Nos.12105362,12175310,12275356and 12305268)the Natural Science Foundation of Hunan Province(Nos.2022JJ20042,2021JJ40653 and2020JJ5031)+1 种基金the Scientific Research Foundation of Hunan Provincial Education Department(No.22B0655)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20210006)
文摘A scheme for generating high-flux angularly uniform proton beams with high laser-to-proton energy conversion efficiency is proposed. Three laser beams are focused on a microwire array attached to a solid-density hemispheric target. The laser-driven hot electrons from the front of the microwire hemisphere generate a hot-electron sheath in the hollow behind it, so that the protons on its back are accelerated by target normal sheath acceleration. The accelerated protons are of high flux, as well as angularly and energetically uniform. The scheme should be useful for applications involving warm dense matter, such as isochoric heating and modification of materials, as well as for proton therapy and inertial confinement fusion.