In exploring hypersonic propulsion,precooler combined engines require the development of lightweight,efficient,and compact heat exchangers(HX).As additive manufacturing technology continues to progress,triply periodic...In exploring hypersonic propulsion,precooler combined engines require the development of lightweight,efficient,and compact heat exchangers(HX).As additive manufacturing technology continues to progress,triply periodic minimal surface(TPMS)structures,characterized by exceptionally high surface area to volume ratios and intricate geometric structures,have demonstrated superior heat transfer performance.This research examines the thermal-hydraulic(TH)behavior of FKS and Diamond as heat transfer structures under different Reynolds numbers through numerical simulations.The Nusselt number for FKS is 13.2%–17.6%higher than Diamond,while the friction factor for FKS is approximately 18.8%–29.3%higher.A detailed analysis of the internal flow mechanisms reveals that the flow pattern within TPMS can be summarized as cyclic convergence-separation-convergence.The fluid experiences constant disturbances from the structure in all spatial directions,generating strong turbulent mixing and large wall shear stresses,which significantly enhance heat transfer performance.展开更多
Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of hi...Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.展开更多
High-performance nanomaterial catalysts for hydrogen evolution reaction via electrochemical water splitting are significant to the development of hydrogen energy.In this work,we report a robust and highly active catal...High-performance nanomaterial catalysts for hydrogen evolution reaction via electrochemical water splitting are significant to the development of hydrogen energy.In this work,we report a robust and highly active catalyst fabricated through direct electrochemical deposition of Pt nanodendrites at the surface of activated carbon(Pt NDs).Owing to the large elect roc he mically active area and the exposed(111) facet of Pt,Pt NDs exhibits outstanding activity towards hydrogen evolution reaction with a low requiring overpotential of 0.027 V at 10 mA/cm2 and Tafel slope of ≈22 mV/dec in acidic media.In addition,the hydrogen yield of Pt NDs is 30%-45% larger than that of commercial Pt/C at the same Pt loadings.Moreover,Pt NDs exhibits excellent lo ng-term durability whose hydrogen production efficiency remains unchanged after six-hour hydrogen production,while the efficiency of commercial Pt/C catalyst decayed 9% under the same circumstance.Considering the superiority of catalytic activity and stability,this Pt NDs present great potentiality towards practical hydrogen production application.展开更多
Cytokinesis is required for faithful division of cytoplasmic components and duplicated nuclei into two daughter cells.Midbody,a protein-dense organelle that forms at the intercellular bridge,is indispensable for succe...Cytokinesis is required for faithful division of cytoplasmic components and duplicated nuclei into two daughter cells.Midbody,a protein-dense organelle that forms at the intercellular bridge,is indispensable for success-ful cytokinesis.However,the regulatory mechanism of cytokinesis at the midbody still remains elusive.Here,we unveil a critical role for NudC-like protein 2(NudCL2),a co-chaperone of heat shock protein 90(Hsp90),in cytokinesis regulation by stabilizing regulator of chromosome condensation 2(RCC2)at the midbody in mam-malian cells.NudCL2 localizes at the midbody,and its downregulation results in cytokinesis failure,multinu-cleation,and midbody disorganization.Using iTRAQ-based quantitative proteomic analysis,we find that RCC2 levels are decreased in NudCL2 knockout(KO)cells.Moreover,Hsp90 forms a complex with NudCL2 to stabilize RCC2,which is essential for cytokinesis.RCC2 depletion mirrors phenotypes observed in NudCL2-downregulated cells.Importantly,ectopic expression of RCC2 rescues the cytokinesis defects induced by NudCL2 deletion,but not vice versa.Together,our data reveal the significance of the NudCL2/Hsp90/RCC2 pathway in cytokinesis at the midbody.展开更多
Catalysts of oxygen reduction reaction (ORR) play key roles in renewable energy technologies such as metal-air batteries and fuel cells. Despite tremendous ef- forts, highly active catalysts with low cost remain elu...Catalysts of oxygen reduction reaction (ORR) play key roles in renewable energy technologies such as metal-air batteries and fuel cells. Despite tremendous ef- forts, highly active catalysts with low cost remain elusive. This work used metal-organic frameworks to synthesize non-precious bimetallic carbon nanocomposites as efficient ORR catalysts. Although carbon-based Cu and Ni are good candidates, the hybrid nanocomposites take advantage of both metals to improve catalytic activity. The resulting molar ratio of Cu/Ni in the nanocomposites can be finely controlled by tuning the recipe of the precursors. Nanocom- posites with a series of molar ratios were produced, and they exhibited much better ORR catalytic performance than their monometallic counterparts in terms of limited current density, onset potential and half-wave potential. In addition, their extraordinary stability in alkaline is superior to that of commercially-available Pt-based materials, which adds to the appeal of the bimetallic carbon nanocomposites as ORR catalysts. Their improved performance can be attributed to the synergetic effects of Cu and Ni, and the enhancement of the carbon matrix.展开更多
Novel three-dimensional (3D) concentration-gradient Ni-Co hydroxide nanostructures (3DCGNC) have been directly grown on nickel foam by a facile stepwise electrochemical deposition method and intensively investigat...Novel three-dimensional (3D) concentration-gradient Ni-Co hydroxide nanostructures (3DCGNC) have been directly grown on nickel foam by a facile stepwise electrochemical deposition method and intensively investigated as binder- and conductor-free electrode for supercapacitors. Based on a three- electrode electrochemical characterization technique, the obtained 3DCGNC electrodes demonstrated a high specific capacitance of 1,760 F·g^-1 and a remarkable rate capability whereby more than 62.5% capacitance was retained when the current density was raised from 1 to 100 A·g^-1. More importantly, asymmetric supercapacitors were assembled by using the obtained 3DCGNC as the cathode and Ketjenblack as a conventional activated carbon anode. The fabricated asymmetric supercapacitors exhibited very promising electrochemical performances with an excellent combination of high energy density of 103.0 Wh·kg^-1 at a power density of 3.0 kW·kg^-1, and excellent rate capability-energy densities of about 70.4 and 26.0 Wh·kg^-1 were achieved when the average power densities were increased to 26.2 and 133.4 kW·kg^-1, respectively. Moreover, an extremely stable cycling life with only 2.7% capacitance loss after 20,000 cycles at a current density of 5 A·g^-1 was achieved, which compares very well with the traditional doublelayer supercapacitors.展开更多
It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been consi...It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been considered as an effective method to improve the catalytic performance,due to the enhanced intrinsic activity and enlarged accessible active sites.Herein,we present novel ternary Co_(1-x)V_(x)P nanoneedle arrays with modulated electronic and morphological structures as an electrocatalyst for highly efficient HER in alkaline solution.The NF@Co1-xVxP catalyst shows a remarkable catalytic ability with low overpotentials of 46 and 226 mV at current densities of 10 and 400 mA cm^(-2),respectively,as well as a small Tafel slope and superior stability.Combining the experimental and computational study,the excellent catalytic performance was attributed to the improved physical and chemical properties(conductivity and surface activity),large active surface area,and fast reaction kinetics.Furthermore,the assembled Co–V based electrolyzer(NF@Co_(1-x)V_(x)–HNNs(+)||NF@Co_(1-x)V_(x)P(-))delivers small full-cell voltages of 1.58,1.75,and 1.92 V at 10,100,and 300 mA cm^(-2),respectively.Our findings provide a systematic understanding on the V–incorporation strategy to promote highly efficient ternary electrocatalysts via synergistic control of morphology and electronic structures.展开更多
基金supported by the Natural Science Basic Research Program of Shaanxi(Program No.2024JC-YBMS-449)Project ZR2022QE233 supported by Shandong Provincial Natural Science Foundation.
文摘In exploring hypersonic propulsion,precooler combined engines require the development of lightweight,efficient,and compact heat exchangers(HX).As additive manufacturing technology continues to progress,triply periodic minimal surface(TPMS)structures,characterized by exceptionally high surface area to volume ratios and intricate geometric structures,have demonstrated superior heat transfer performance.This research examines the thermal-hydraulic(TH)behavior of FKS and Diamond as heat transfer structures under different Reynolds numbers through numerical simulations.The Nusselt number for FKS is 13.2%–17.6%higher than Diamond,while the friction factor for FKS is approximately 18.8%–29.3%higher.A detailed analysis of the internal flow mechanisms reveals that the flow pattern within TPMS can be summarized as cyclic convergence-separation-convergence.The fluid experiences constant disturbances from the structure in all spatial directions,generating strong turbulent mixing and large wall shear stresses,which significantly enhance heat transfer performance.
基金flnancial support by the National Natural Science Foundation of China (52102055, 5227020331, 52075527)National Key R&D Program of China (2017YFB0406000 and 2017YFE0128600)+8 种基金the Project of the Chinese Academy of Sciences (XDC07030100, XDA22020602, ZDKYYQ20200001 and ZDRW-CN-2019-3)CAS Youth Innovation Promotion Association (2020301)Science and Technology Major Project of Ningbo (2021Z120, 2021Z115, 2022Z084, 2018B10046 and 2016S1002)the Natural Science Foundation of Ningbo (2017A610010)Foundation of State Key Laboratory of Solid lubrication (LSL-1912)China Postdoctoral Science Foundation (2020M681965, 2022M713243)National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (6142905192806)K.C. Wong Education Foundation (GJTD-2019-13)the 3315 Program of Ningbo for financial support
文摘Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.
基金financial support by the National Natural Science Foundation of China(Nos.51573201,51501209 and 201675165)NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(No.U1709205)+6 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA22000000)Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YZ201640)Science and Technology Major Project of Ningbo(Nos.2016S1002,2016B10038)International S&T Cooperation Program of Ningbo(No.2017D10016)for financial supportthe Chinese Academy of Sciences for Hundred Talents ProgramChinese Central Government for Thousand Young Talents Program3315 Program of Ningbo。
文摘High-performance nanomaterial catalysts for hydrogen evolution reaction via electrochemical water splitting are significant to the development of hydrogen energy.In this work,we report a robust and highly active catalyst fabricated through direct electrochemical deposition of Pt nanodendrites at the surface of activated carbon(Pt NDs).Owing to the large elect roc he mically active area and the exposed(111) facet of Pt,Pt NDs exhibits outstanding activity towards hydrogen evolution reaction with a low requiring overpotential of 0.027 V at 10 mA/cm2 and Tafel slope of ≈22 mV/dec in acidic media.In addition,the hydrogen yield of Pt NDs is 30%-45% larger than that of commercial Pt/C at the same Pt loadings.Moreover,Pt NDs exhibits excellent lo ng-term durability whose hydrogen production efficiency remains unchanged after six-hour hydrogen production,while the efficiency of commercial Pt/C catalyst decayed 9% under the same circumstance.Considering the superiority of catalytic activity and stability,this Pt NDs present great potentiality towards practical hydrogen production application.
基金supported by the National Natural Science Foundation of China(Nos.32070709,32270771,and U21A20197)the National Key Research and Development Program of China(Nos.2019YFA0802202)the Higher Education Discipline Innovation Project(also known as the111 Project)(Nos.B13026).
文摘Cytokinesis is required for faithful division of cytoplasmic components and duplicated nuclei into two daughter cells.Midbody,a protein-dense organelle that forms at the intercellular bridge,is indispensable for success-ful cytokinesis.However,the regulatory mechanism of cytokinesis at the midbody still remains elusive.Here,we unveil a critical role for NudC-like protein 2(NudCL2),a co-chaperone of heat shock protein 90(Hsp90),in cytokinesis regulation by stabilizing regulator of chromosome condensation 2(RCC2)at the midbody in mam-malian cells.NudCL2 localizes at the midbody,and its downregulation results in cytokinesis failure,multinu-cleation,and midbody disorganization.Using iTRAQ-based quantitative proteomic analysis,we find that RCC2 levels are decreased in NudCL2 knockout(KO)cells.Moreover,Hsp90 forms a complex with NudCL2 to stabilize RCC2,which is essential for cytokinesis.RCC2 depletion mirrors phenotypes observed in NudCL2-downregulated cells.Importantly,ectopic expression of RCC2 rescues the cytokinesis defects induced by NudCL2 deletion,but not vice versa.Together,our data reveal the significance of the NudCL2/Hsp90/RCC2 pathway in cytokinesis at the midbody.
基金supported by the National Natural Science Foundation of China (21671096 and 21603094)the Natural Science Foundation of Shenzhen (JCYJ20150630145302231 and JCYJ20150331101823677)the Science and Technology Innovation Foundation for the Undergraduates of SUSTech (2014S07, 2016S10 and 2016S20)
文摘Catalysts of oxygen reduction reaction (ORR) play key roles in renewable energy technologies such as metal-air batteries and fuel cells. Despite tremendous ef- forts, highly active catalysts with low cost remain elusive. This work used metal-organic frameworks to synthesize non-precious bimetallic carbon nanocomposites as efficient ORR catalysts. Although carbon-based Cu and Ni are good candidates, the hybrid nanocomposites take advantage of both metals to improve catalytic activity. The resulting molar ratio of Cu/Ni in the nanocomposites can be finely controlled by tuning the recipe of the precursors. Nanocom- posites with a series of molar ratios were produced, and they exhibited much better ORR catalytic performance than their monometallic counterparts in terms of limited current density, onset potential and half-wave potential. In addition, their extraordinary stability in alkaline is superior to that of commercially-available Pt-based materials, which adds to the appeal of the bimetallic carbon nanocomposites as ORR catalysts. Their improved performance can be attributed to the synergetic effects of Cu and Ni, and the enhancement of the carbon matrix.
基金This work was supported by the National Natural Science Foundation of China (No. 21001117), the Shenzhen Peacock Plan (No. KQCX20140522150815065), and the Starting-Up Funds of South University of Science and Technology of China (SUSTC) through the Talent Plan of the Shenzhen Government. H. T. L. acknowledges the support from a Key Project of the Hunan Provincial Science and Technology Plan (No. 2014FJ2007).
文摘Novel three-dimensional (3D) concentration-gradient Ni-Co hydroxide nanostructures (3DCGNC) have been directly grown on nickel foam by a facile stepwise electrochemical deposition method and intensively investigated as binder- and conductor-free electrode for supercapacitors. Based on a three- electrode electrochemical characterization technique, the obtained 3DCGNC electrodes demonstrated a high specific capacitance of 1,760 F·g^-1 and a remarkable rate capability whereby more than 62.5% capacitance was retained when the current density was raised from 1 to 100 A·g^-1. More importantly, asymmetric supercapacitors were assembled by using the obtained 3DCGNC as the cathode and Ketjenblack as a conventional activated carbon anode. The fabricated asymmetric supercapacitors exhibited very promising electrochemical performances with an excellent combination of high energy density of 103.0 Wh·kg^-1 at a power density of 3.0 kW·kg^-1, and excellent rate capability-energy densities of about 70.4 and 26.0 Wh·kg^-1 were achieved when the average power densities were increased to 26.2 and 133.4 kW·kg^-1, respectively. Moreover, an extremely stable cycling life with only 2.7% capacitance loss after 20,000 cycles at a current density of 5 A·g^-1 was achieved, which compares very well with the traditional doublelayer supercapacitors.
基金the National Natural Science Foundation of China(21671096,21603094 and21905180)the Natural Science Foundation of Guangdong Province(2018B030322001 and 2018A030310225)+4 种基金Shenzhen Peacock Plan(KQTD2016022620054656)Shenzhen Key Laboratory Project(ZDSYS201603311013489)the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen(JCYJ20190809115413414)the Science and Technology Development Fund from Macao SAR(FDCT–0102/2019/A2,FDCT–0035/2019/AGJ and FDCT–0154/2019/A3)the Multi-Year Research Grants(MYRG2017–00027–FST and MYRG2018–00003–IAPME)from the University of Macao。
文摘It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been considered as an effective method to improve the catalytic performance,due to the enhanced intrinsic activity and enlarged accessible active sites.Herein,we present novel ternary Co_(1-x)V_(x)P nanoneedle arrays with modulated electronic and morphological structures as an electrocatalyst for highly efficient HER in alkaline solution.The NF@Co1-xVxP catalyst shows a remarkable catalytic ability with low overpotentials of 46 and 226 mV at current densities of 10 and 400 mA cm^(-2),respectively,as well as a small Tafel slope and superior stability.Combining the experimental and computational study,the excellent catalytic performance was attributed to the improved physical and chemical properties(conductivity and surface activity),large active surface area,and fast reaction kinetics.Furthermore,the assembled Co–V based electrolyzer(NF@Co_(1-x)V_(x)–HNNs(+)||NF@Co_(1-x)V_(x)P(-))delivers small full-cell voltages of 1.58,1.75,and 1.92 V at 10,100,and 300 mA cm^(-2),respectively.Our findings provide a systematic understanding on the V–incorporation strategy to promote highly efficient ternary electrocatalysts via synergistic control of morphology and electronic structures.