Though oncolytic viruses(OVs)hold significant potential for comprehensive treatment of malignant tumors,their systemic administration faces substantial challenges such as insufficient circulation time,inadequate tumor...Though oncolytic viruses(OVs)hold significant potential for comprehensive treatment of malignant tumors,their systemic administration faces substantial challenges such as insufficient circulation time,inadequate tumor targeting,and spontaneous antiviral immune response of the body,which seriously limits the clinical application of OVs.Herein,we proposed a tumor targeting strategy of tumor cell membrane biomimetic liposomes to encapsulate OVs for intravenous delivery,which enables OVs to target the homotypic tumor lesions and exert their oncolytic effect.On the one hand,this cell membrane biomimetic carrier enhanced the encapsulation of OVs by the hybrid lipid membranes,concealed the viral capsid proteins,and diminished the neutralization and clearance of the virions from the bloodstream.On the other hand,enhanced tumor targeted delivery can be achieved through the utilization of homologous adhesion molecules on the surface of tumor cell membrane.In addition,this strategy also promoted the tumor infiltration of CD4^(+),CD8^(+)T cells mediated by the oncolytic effect of OVs and increased the levels of inflammatory factors such as tumor necrosis factor-α(TNF-α)and interleukin-6(IL-6)in the tumor,thereby effectively enhancing the anti-tumor effect of intravenous administration of OVs.The findings of our study demonstrate that T-L@Ad11 offers a handy and efficient approach for targeting tumors,thereby enhancing the antitumor efficacy of intravenous administration of OVs.展开更多
Interstitial hypertension and extracellular matrix(ECM)barriers imposed by cancer-associated fibroblasts(CAFs)at the tumor site significantly impede the retention of intratumorally administered oncolytic viruses(OVs)a...Interstitial hypertension and extracellular matrix(ECM)barriers imposed by cancer-associated fibroblasts(CAFs)at the tumor site significantly impede the retention of intratumorally administered oncolytic viruses(OVs)as well as their efficacy in infecting and eradicating tumor cells.Herein,a stable,controllable,and easily prepared hydrogel was developed for employing a differential release strategy to deliver OVs.The oncolytic herpes simplex virus-2(oH2)particles were loaded within sodium alginate(ALG),together with the small molecule drug PT-100 targeting CAFs.The rapid release of PT-100 functions as an anti-CAFs agent,reducing ECM,and alleviating interstitial pressure at the tumor site.Consequently,the delayed release of oH2 could more effectively invade and eradicate tumor cells while also facilitating enhanced infiltration of immune cells into the tumor microenvironment,thereby establishing an immunologically favorable milieu against tumors.This approach holds significant potential for achieving highly efficient oncolytic virus therapy with minimal toxicity,particularly in tumors rich in stromal components.展开更多
In this work,a flexible battery structure is fabricated using soft lithography and three-dimensional(3D) printing technology.Ga_(52.5)Sn_(39.5)Zn_(8) anode material,Bi_(67)In_(33) cathode material,and alkaline hydroge...In this work,a flexible battery structure is fabricated using soft lithography and three-dimensional(3D) printing technology.Ga_(52.5)Sn_(39.5)Zn_(8) anode material,Bi_(67)In_(33) cathode material,and alkaline hydrogel electrolyte are introduced to form the flexible battery.A variety of circuit structures are fabricated to realize the series-parallel integration of different numbers of single cells and achieve the fabrication of batteries with different voltages and powers,with a maximum open-circuit voltage(OCV) of 4.6 V and a maximum output power of 1.193 mW.A reconfigurable soft battery group is proposed,and the regulation of the battery voltage has been realized through the microfluidic perfusion process without the need for an external variable-voltage circuit.We have also fabricated an EGaIn-NaOH microfluidic switch to achieve the control of the light emitting diode(LED).In addition,a wristband with a flexible battery is demonstrated to realize power supply to a liquid crystal display(LCD) with a clock or a temperature sensor.展开更多
Electronic-state modulation strategy offers great potential in designing RuO_(2)-based bifunctionalelectrocatalysts for rechargeable Zn-air batteries(ZABs).Various three-dimensional(3D)transition metal oxides are atte...Electronic-state modulation strategy offers great potential in designing RuO_(2)-based bifunctionalelectrocatalysts for rechargeable Zn-air batteries(ZABs).Various three-dimensional(3D)transition metal oxides are attempted to couple with RuO_(2)for constructing an appropriate Ru—O—M interface.This work aims to construct Co_(3)O_(4)-RuO_(2)heterostructures on carbon sheets(Co_(3)O_(4)/RuO_(2)/NCNS)for boosting electronic transfer and regulation.Experiments and theoretical calculations identify the electronic transfer from Co_(3)O_(4)to RuO_(2)that modulates the electronic structure of metal surfaces/interfaces.Specifically,it leads to the increase in Co3+content,electron-rich state at RuO_(2)surface and electronic accumulation at interfaces.Moreover,this electronic-state modulation optimizes the d-band center in Co_(3)O_(4)/RuO_(2)that lowers the reaction barriers and endows interfaces as the biggest contributor to oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)performance,The Co_(3)O_(4)/RuO_(2)/NCNS shows a quite low potential difference of 0.62 V and remarkable durability for ORR/OER.Co_(3)O_(4)/RuO_(2)/NCNS-assembled ZABs exhibit an excellent specific capacity of 818.3 mA h g^(-1)and a superior lifespan over 750 h.展开更多
This study compares the seasonal and interannual-to-decadal variability in the strength and position of the Kuroshio Extension front(KEF)using high-resolution satellite-derived sea surface temperature(SST)and sea surf...This study compares the seasonal and interannual-to-decadal variability in the strength and position of the Kuroshio Extension front(KEF)using high-resolution satellite-derived sea surface temperature(SST)and sea surface height(SSH)data.Results show that the KEF strength has an obvious seasonal variation that is similar at different longitudes,with a stronger(weaker)KEF during the cold(warm)season.However,the seasonal variation in the KEF position is relatively weak and varies with longitude.In contrast,the low-frequency variation of the KEF position is more distinct than that of the KEF strength even though they are well correlated.On both seasonal and interannual-to-decadal time scales,the western part of the KEF(142°–144°E)has the greatest variability in strength,while the eastern part of the KEF(149°–155°E)has the greatest variability in position.In addition,the relationships between wind-forced Rossby waves and the low-frequency variability in the KEF strength and position are also discussed by using the statistical analysis methods and a wind-driven hindcast model.A positive(negative)North Pacific Oscillation(NPO)-like atmospheric forcing generates positive(negative)SSH anomalies over the central North Pacific.These oceanic signals then propagate westward as Rossby waves,reaching the KE region about three years later,favoring a strengthened(weakened)and northward(southward)-moving KEF.展开更多
The development of novel adjuvants constitutes a new strategy for the research of tumor vaccines.Immunomodulatory molecule adjuvants are one of the novel adjuvants that can effectively stimulate the pattern recognitio...The development of novel adjuvants constitutes a new strategy for the research of tumor vaccines.Immunomodulatory molecule adjuvants are one of the novel adjuvants that can effectively stimulate the pattern recognition receptors to activate the downstream pathways of immune cells.However,there are few studies on immunomodulatory molecular adjuvants associated with C-type lectin.It has been reported that GlcC_(14)C_(18)is a Mincle ligand with a relatively simple structure and strong adjuvant activity in vivo.Herein,we coupled GlcC_(14)C_(18)with MUC1 glycopeptide and evaluated its immune effect.In addition,we also synthesized α-GlcC_(14)C_(18)-MUC1 and β-GlcC_(14)C_(18)-MUC1 based on the two configurations of GlcC_14C_(18)and compared their immune effects.The results show that both of the two configurations of the vaccine have a good immune effect,but to a certain extent,the immune effect of β-GlcC_(14)C_(18)-MUC1 is better than that of α-GlcC_(14)C_(18)-MUC1.展开更多
Owing to the increasingly serious environmental issues caused by the sulfur burnt in fuel, desulfurization has become an important topic. In this work, an amphiphilic oxygen-defective tungsten oxide was synthesized by...Owing to the increasingly serious environmental issues caused by the sulfur burnt in fuel, desulfurization has become an important topic. In this work, an amphiphilic oxygen-defective tungsten oxide was synthesized by a colloidal chemistry method. The amphiphilic property and oxygen defects were well characterized, and the structure of the oxygen-defective tungsten oxide catalyst was investigated. In addition, the catalyst was employed in oxidative desulfurization system of fuel,and deep desulfurization was achieved. It was found that the very high oxidative desulfurization performance of oxygendefective tungsten oxide catalyst resulted from both the amphiphilic property and oxygen defects. This work can provide a strategy for preparation of highly active metal oxide catalysts with oxygen defects in oxidative desulfurization reaction of fuel.展开更多
With the world's focus on wearable electronics, the scientific community has anticipated the plasticine-like processability of electrolytes and electrodes. A bioinspired composite of polymer and phase-changing sal...With the world's focus on wearable electronics, the scientific community has anticipated the plasticine-like processability of electrolytes and electrodes. A bioinspired composite of polymer and phase-changing salt with the similar bonding structure to that of natural bones is a suitable electrolyte candidate. Here, Wang et al. reported a water-mediated composite electrolyte by simple thermal mixing of crystallohydrate and polymer. The processable phase-change composites have significantly high mechanical strength and high ionic mobility.展开更多
Electrocatalytic CO_(2) reduction reaction (eCO_(2)RR) presents a promising approach for harnessing renewable energy and converting greenhouse gas (CO_(2)) into high value-added CO products.N-doped single atom (SA) an...Electrocatalytic CO_(2) reduction reaction (eCO_(2)RR) presents a promising approach for harnessing renewable energy and converting greenhouse gas (CO_(2)) into high value-added CO products.N-doped single atom (SA) and atomic-level metal nanocluster (MN) tandem catalysts with rich defects for eCO_(2)RR are reported,which achieved a maximum CO Faraday efficiency (FE_(CO)) of 97.7%(-0.7 V vs.RHE) in the H-type cell and maintained over 95% FE_(CO)at potentials from -0.18 to -0.73 V vs.RHE in the flow cell.Furthermore,the catalyst in the flow cell demonstrated a remarkably low onset potential of-0.14 V vs.RHE and the current density was approximately three times that of the H-type cell.Interestingly,XPS analysis indicates that carbon substrates containing defects have more pyridine-N content.DFT calculations and in-situ attenuated total reflection Fourier transform infrared support this finding by showing that the Ni-(N-C_(2))_(3) active sites with defect favors preferentially convert CO_(2)-to-CO.展开更多
Although cancer immunotherapy has made great strides in the clinic,it is still hindered by the tumor immunosuppressive microenvironment(TIME).The stimulator of interferon genes(STING)pathway which can modulate TIME ef...Although cancer immunotherapy has made great strides in the clinic,it is still hindered by the tumor immunosuppressive microenvironment(TIME).The stimulator of interferon genes(STING)pathway which can modulate TIME effectively has emerged as a promising therapeutic recently.However,the delivery of most STING agonists,specifically cyclic dinucleotides(CDNs),is performed intratumorally due to their insufficient pharmacological properties,such as weak permeability across cell membranes and vulnerability to nuclease degradation.To expand the clinical applicability of CDNs,a novel pH-sensitive polycationic polymer-modified lipid nanoparticle(LNP-B)system was developed for intravenous delivery of CDNs.LNP-B significantly extended the circulation of CDNs and enhanced the accumulation of CDNs within the tumor,spleen,and tumor-draining lymph nodes compared with free CDNs thereby triggering the STING pathway of dendritic cells and repolarizing pro-tumor macrophages.These events subsequently gave rise to potent anti-tumor immune reactions and substantial inhibition of tumors in CT26 colon cancer-bearing mouse models.In addition,due to the acid-sensitive property of the polycationic polymer,the delivery system of LNP-B was more biocompatible and safer compared with lipid nanoparticles formulated with an indissociable cationic DOTAP(LNP-D).These findings suggest that LNP-B has great potential in the intravenous delivery of CDNs for tumor immunotherapy.展开更多
The standard design technology co-optimization(DTCO)involves frequent interactions between circuit design and process manufacturing,which requires several months.To assist designers in establishing a bridge between de...The standard design technology co-optimization(DTCO)involves frequent interactions between circuit design and process manufacturing,which requires several months.To assist designers in establishing a bridge between device parameters and circuit metrics efficiently,and provide guidance for parameter optimization in the early stages of circuit design.In this paper,we propose an efficient machine learning(ML)-enhanced DTCO framework.This framework achieves the co-optimization of device parameters and circuit metrics.We select the gate metal work function(WF)as the parameter to validate the effectiveness of our framework.And the ridge regression approach is used to bypass TCAD simulation,compact model extraction and cell library characterization.We reduces time consumption by at least 92%compared to traditional DTCO framework,while ensuring that errors of delay,internal power consumption and leakage power below 4 ps,0.035mJ,and 0.4μW,respectively.By adjusting the WF,we achieved a better balance between circuit delay and power consumption.This work contributes to designers exploring a broader design space and achieving a efficient DTCO flow.展开更多
The high chloride(Cl)concentration in seawater presents a critical challenge for hydrogen production via seawater electrolysis by deactivating catalysts through active site passivation,highlighting the need for cataly...The high chloride(Cl)concentration in seawater presents a critical challenge for hydrogen production via seawater electrolysis by deactivating catalysts through active site passivation,highlighting the need for catalyst innovation.Herein,in situ boron-doped Co_(2)P/CoP(B-Co_(x)P)ultrathin nanosheet arrays are prepared as high-performance bifunctional electrocatalysts for seawater decomposition.Density functional theory(DFT)simulations,comprehensive characterizations,and in-situ analyses reveal that boron doping enhances electron density around Co centers,induces lattice distortions,and significantly elevates catalytic activity and durability.Moreover,boron doping reduces*Cl retention time at active sites—defined as the DFT-derived residence time of adsorbed Cl intermediates based on their adsorption energies—effectively mitigating Cl-induced poisoning.In a three-electrode system,B-Co_(x)P achieves exceptional bifunctional performance with overpotentials of 11 mV for hydrogen evolution reaction and 196 mV for oxygen evolution reaction to deliver 10 and 50 mA·cm^(-2),respectively—a result that showcases its superior bifunctional properties surpassing noble metal-based counterparts.In an alkaline electrolyzer,it delivers 1.56 A·cm^(-2)at 2.87 V for seawater electrolysis with outstanding stability over 500 h,preserving active site integrity via boron's robust protective role.This study defines a paradigm for designing advanced seawater electrolysis catalysts through a strategic in-situ doping approach.展开更多
Pancreatic cancer,notorious for its late diagnosis and aggressive progression,poses a substantial challenge owing to scarce treatment alternatives.This review endeavors to furnish a holistic insight into pancreatic ca...Pancreatic cancer,notorious for its late diagnosis and aggressive progression,poses a substantial challenge owing to scarce treatment alternatives.This review endeavors to furnish a holistic insight into pancreatic cancer,encompassing its epidemiology,genomic characterization,risk factors,diagnosis,therapeutic strategies,and treatment resistance mechanisms.We delve into identifying risk factors,including genetic predisposition and environmental exposures,and explore recent research advancements in precursor lesions and molecular subtypes of pancreatic cancer.Additionally,we highlight the development and application of multi-omics approaches in pancreatic cancer research and discuss the latest combinations of pancreatic cancer biomarkers and their efficacy.We also dissect the primary mechanisms underlying treatment resistance in this malignancy,illustrating the latest therapeutic options and advancements in the field.Conclusively,we accentuate the urgent demand for more extensive research to enhance the prognosis for pancreatic cancer patients.展开更多
Flexible high-frequency vibration sensors are highly desirable in various real-world applications such as structural health monitoring,environmental monitoring,and the internet of things.However,developing a facile an...Flexible high-frequency vibration sensors are highly desirable in various real-world applications such as structural health monitoring,environmental monitoring,and the internet of things.However,developing a facile and effective method to fabricate vibration sensors simultaneously featuring high vibration frequency response-ability and flexibility remains a grand challenge.Herein,we report a flexible ultrahigh-frequency triboelectric vibration sensor(UTVS)prepared by a layer-particle-layer structure.Owing to the flexibility of the materials(i.e.,polyethylene terephthalate membrane)and the ultrahigh-frequency vibration response-ability of internal microparticles,the flexible UTVS exhibits an enhanced working frequency range of 3–170 kHz,which is much broader than previously reported triboelectric vibration sensors.Moreover,the UTVS can work not only in a flat state but also in a bent state due to its flexibility and the unique layer-particle-layer structural design.The UTVS shows nanometer-level vibration response-ability,omnidirectional response,stability in the temperature range of 10–70°C,good frequency resolution of 0.01 kHz,and excellent performance in burst vibration detection(e.g.,pencil lead break events and impact events from falling steel balls).With a collection of compelling features,the device is successfully demonstrated in vibration monitoring of curved structures(e.g.,real-time water pipeline leak monitoring).Such a flexible ultrahigh-frequency triboelectric vibration sensor holds great potential in a wide range of practical applications,such as communication,health care,and infrastructure monitoring.展开更多
Owing to the stimulus-responsive and dynamic properties,magnetism-driven assembly of building blocks to form ordered structures is always a marvelous topic.While abundant magnetic assemblies have been developed in ide...Owing to the stimulus-responsive and dynamic properties,magnetism-driven assembly of building blocks to form ordered structures is always a marvelous topic.While abundant magnetic assemblies have been developed in ideal physical and chemical conditions,it remains a challenge to realize magnetic assembly in complicated biological systems.Herein,we report a kind of biomacromolecule-modified magnetic nanosheets,which are mainly composed of superparamagnetic graphene oxide(Y-Fe2O3@GO),the tumor-targeting protein transferrin(TF),and the mitochondrion-targeting peptide(MitP).Such large-size nanosheets(0.5-1μm),noted as L-Fe2O3@GO-MitP-TF,can successfully in s itu assemble on the surface of tumor cells in a size-dependent and tumor cell-specific way,leading to severe inhibition of nutrient uptake for the tumor cells.More significantly,the nanostructures could efficiently confine the tumor cells,preventing both invasion and metastasis of tumor cells both in vitro and in vivo.Moreover,the 2D assemblies could remarkably disrupt the mitochondria and induce apoptosis,remarkably eradicating tumors under near-infrared(NIR)irradiation.This study sheds light on the development of new nano-systems for efficient cancer therapy and other biomedical applications.展开更多
Crystalline nanostructures possess defects/vacancies that affect their physical and chemical properties. In this regard, the electronic structure of materials can be effectively regulated through defect engineering; t...Crystalline nanostructures possess defects/vacancies that affect their physical and chemical properties. In this regard, the electronic structure of materials can be effectively regulated through defect engineering; therefore, the correlation between defects/vacancies and the properties of a material has attracted extensive attention. Here, we report the synthesis of Bi2S3 microspheres by nanorod assemblies with exposed {211} facets, and the investigation of the types and concentrations of defects/vacancies by means of positron annihilation spectrometry. Our studies revealed that an increase in the calcined temperature, from 350 to 400 ℃, led the predominant defect/vacancy densities to change from isolated bismuth vacancies (VBi) to septuple Bi3+-sulfur vacancy associates (VBiBiBiSSSS). Furthermore, the concentration of septuple BiB+-sulfur vacancy associates increased as the calcined temperature was increased from 400 to 450 ℃. The characterized transient photocurrent spectrum demonstrates that the photocurrent values closely correlate with the types and concentrations of the predominant defects/vacancies. Our theoretical computation, through first principles, showed that VBiBiBiSSSS strongly absorbs I2(sol), easily desorbs I-(sol), and enhances the electrocatalytic activity of the nanostructures.展开更多
基金supported by the National Key R&D Program of China(No.2022YFC2403401)the National Natural Science Foundation of China(nos.82073368,82303766)+2 种基金the Liaoning Revitalization Talents Program(No.XLYC2007071)the China Postdoctoral Science Foundation(No.2023M743908)the Joint Program of Science and Technology Program of Liaoning Province(No.2023JH2/101700094).
文摘Though oncolytic viruses(OVs)hold significant potential for comprehensive treatment of malignant tumors,their systemic administration faces substantial challenges such as insufficient circulation time,inadequate tumor targeting,and spontaneous antiviral immune response of the body,which seriously limits the clinical application of OVs.Herein,we proposed a tumor targeting strategy of tumor cell membrane biomimetic liposomes to encapsulate OVs for intravenous delivery,which enables OVs to target the homotypic tumor lesions and exert their oncolytic effect.On the one hand,this cell membrane biomimetic carrier enhanced the encapsulation of OVs by the hybrid lipid membranes,concealed the viral capsid proteins,and diminished the neutralization and clearance of the virions from the bloodstream.On the other hand,enhanced tumor targeted delivery can be achieved through the utilization of homologous adhesion molecules on the surface of tumor cell membrane.In addition,this strategy also promoted the tumor infiltration of CD4^(+),CD8^(+)T cells mediated by the oncolytic effect of OVs and increased the levels of inflammatory factors such as tumor necrosis factor-α(TNF-α)and interleukin-6(IL-6)in the tumor,thereby effectively enhancing the anti-tumor effect of intravenous administration of OVs.The findings of our study demonstrate that T-L@Ad11 offers a handy and efficient approach for targeting tumors,thereby enhancing the antitumor efficacy of intravenous administration of OVs.
基金supported by the National Key R&D Program of China(No.2022YFC2403401)the National Natural Science Foundation of China(Nos.82073368,82303766)+2 种基金the Liaoning Revitalization Talents Program(No.XLYC2007071)the China Postdoctoral Science Foundation(No.2023M743908)the Joint Program of Science and Technology Program of Liaoning Province(No.2023JH2/101700094).
文摘Interstitial hypertension and extracellular matrix(ECM)barriers imposed by cancer-associated fibroblasts(CAFs)at the tumor site significantly impede the retention of intratumorally administered oncolytic viruses(OVs)as well as their efficacy in infecting and eradicating tumor cells.Herein,a stable,controllable,and easily prepared hydrogel was developed for employing a differential release strategy to deliver OVs.The oncolytic herpes simplex virus-2(oH2)particles were loaded within sodium alginate(ALG),together with the small molecule drug PT-100 targeting CAFs.The rapid release of PT-100 functions as an anti-CAFs agent,reducing ECM,and alleviating interstitial pressure at the tumor site.Consequently,the delayed release of oH2 could more effectively invade and eradicate tumor cells while also facilitating enhanced infiltration of immune cells into the tumor microenvironment,thereby establishing an immunologically favorable milieu against tumors.This approach holds significant potential for achieving highly efficient oncolytic virus therapy with minimal toxicity,particularly in tumors rich in stromal components.
基金supported by the Science and Technology Program from State Grid Corporation of China through the Development of Flexible Liquid Metal Based Micro-Sensor with Anti-Electromagnetic Interference Ability for Power Engineering Applications under Grant 5700-202155453A-00-00。
文摘In this work,a flexible battery structure is fabricated using soft lithography and three-dimensional(3D) printing technology.Ga_(52.5)Sn_(39.5)Zn_(8) anode material,Bi_(67)In_(33) cathode material,and alkaline hydrogel electrolyte are introduced to form the flexible battery.A variety of circuit structures are fabricated to realize the series-parallel integration of different numbers of single cells and achieve the fabrication of batteries with different voltages and powers,with a maximum open-circuit voltage(OCV) of 4.6 V and a maximum output power of 1.193 mW.A reconfigurable soft battery group is proposed,and the regulation of the battery voltage has been realized through the microfluidic perfusion process without the need for an external variable-voltage circuit.We have also fabricated an EGaIn-NaOH microfluidic switch to achieve the control of the light emitting diode(LED).In addition,a wristband with a flexible battery is demonstrated to realize power supply to a liquid crystal display(LCD) with a clock or a temperature sensor.
基金supported by the National Natural Science Foundation of China(52273264)the Outstanding Youth Fund of Heilongjiang Province(JQ 2020B002).
文摘Electronic-state modulation strategy offers great potential in designing RuO_(2)-based bifunctionalelectrocatalysts for rechargeable Zn-air batteries(ZABs).Various three-dimensional(3D)transition metal oxides are attempted to couple with RuO_(2)for constructing an appropriate Ru—O—M interface.This work aims to construct Co_(3)O_(4)-RuO_(2)heterostructures on carbon sheets(Co_(3)O_(4)/RuO_(2)/NCNS)for boosting electronic transfer and regulation.Experiments and theoretical calculations identify the electronic transfer from Co_(3)O_(4)to RuO_(2)that modulates the electronic structure of metal surfaces/interfaces.Specifically,it leads to the increase in Co3+content,electron-rich state at RuO_(2)surface and electronic accumulation at interfaces.Moreover,this electronic-state modulation optimizes the d-band center in Co_(3)O_(4)/RuO_(2)that lowers the reaction barriers and endows interfaces as the biggest contributor to oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)performance,The Co_(3)O_(4)/RuO_(2)/NCNS shows a quite low potential difference of 0.62 V and remarkable durability for ORR/OER.Co_(3)O_(4)/RuO_(2)/NCNS-assembled ZABs exhibit an excellent specific capacity of 818.3 mA h g^(-1)and a superior lifespan over 750 h.
基金The National Natural Science Foundation of China under contract Nos 41975066,41605051 and 41406003the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research under contract No.SKLEC-KF201707+1 种基金the High-Tech Innovation Think-Tank Youth Project under contract No.DXB-ZKQN-2016-019Jiangsu Provincial Natural Science Foundation under contract No.BK20130064。
文摘This study compares the seasonal and interannual-to-decadal variability in the strength and position of the Kuroshio Extension front(KEF)using high-resolution satellite-derived sea surface temperature(SST)and sea surface height(SSH)data.Results show that the KEF strength has an obvious seasonal variation that is similar at different longitudes,with a stronger(weaker)KEF during the cold(warm)season.However,the seasonal variation in the KEF position is relatively weak and varies with longitude.In contrast,the low-frequency variation of the KEF position is more distinct than that of the KEF strength even though they are well correlated.On both seasonal and interannual-to-decadal time scales,the western part of the KEF(142°–144°E)has the greatest variability in strength,while the eastern part of the KEF(149°–155°E)has the greatest variability in position.In addition,the relationships between wind-forced Rossby waves and the low-frequency variability in the KEF strength and position are also discussed by using the statistical analysis methods and a wind-driven hindcast model.A positive(negative)North Pacific Oscillation(NPO)-like atmospheric forcing generates positive(negative)SSH anomalies over the central North Pacific.These oceanic signals then propagate westward as Rossby waves,reaching the KE region about three years later,favoring a strengthened(weakened)and northward(southward)-moving KEF.
基金supported by the National Natural Science Foundation of China (Nos. 22077068, 82103984)the Fundamental Research Funds for the Central Universities。
文摘The development of novel adjuvants constitutes a new strategy for the research of tumor vaccines.Immunomodulatory molecule adjuvants are one of the novel adjuvants that can effectively stimulate the pattern recognition receptors to activate the downstream pathways of immune cells.However,there are few studies on immunomodulatory molecular adjuvants associated with C-type lectin.It has been reported that GlcC_(14)C_(18)is a Mincle ligand with a relatively simple structure and strong adjuvant activity in vivo.Herein,we coupled GlcC_(14)C_(18)with MUC1 glycopeptide and evaluated its immune effect.In addition,we also synthesized α-GlcC_(14)C_(18)-MUC1 and β-GlcC_(14)C_(18)-MUC1 based on the two configurations of GlcC_14C_(18)and compared their immune effects.The results show that both of the two configurations of the vaccine have a good immune effect,but to a certain extent,the immune effect of β-GlcC_(14)C_(18)-MUC1 is better than that of α-GlcC_(14)C_(18)-MUC1.
基金financial support by Students’ Platform for innovation and entrepreneurship training of Jiangsu Province (201810299008z)the National Nature Science Foundation of China (Nos. 21576122, 21722604, 21766007)+1 种基金Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University (20150376)the Natural Science Foundation of Jiangsu Provincial Department of Education (17KJA150002)
文摘Owing to the increasingly serious environmental issues caused by the sulfur burnt in fuel, desulfurization has become an important topic. In this work, an amphiphilic oxygen-defective tungsten oxide was synthesized by a colloidal chemistry method. The amphiphilic property and oxygen defects were well characterized, and the structure of the oxygen-defective tungsten oxide catalyst was investigated. In addition, the catalyst was employed in oxidative desulfurization system of fuel,and deep desulfurization was achieved. It was found that the very high oxidative desulfurization performance of oxygendefective tungsten oxide catalyst resulted from both the amphiphilic property and oxygen defects. This work can provide a strategy for preparation of highly active metal oxide catalysts with oxygen defects in oxidative desulfurization reaction of fuel.
文摘With the world's focus on wearable electronics, the scientific community has anticipated the plasticine-like processability of electrolytes and electrodes. A bioinspired composite of polymer and phase-changing salt with the similar bonding structure to that of natural bones is a suitable electrolyte candidate. Here, Wang et al. reported a water-mediated composite electrolyte by simple thermal mixing of crystallohydrate and polymer. The processable phase-change composites have significantly high mechanical strength and high ionic mobility.
基金supported by the Tianjin Science and Technology support key projects (20JCYBJC01420)。
文摘Electrocatalytic CO_(2) reduction reaction (eCO_(2)RR) presents a promising approach for harnessing renewable energy and converting greenhouse gas (CO_(2)) into high value-added CO products.N-doped single atom (SA) and atomic-level metal nanocluster (MN) tandem catalysts with rich defects for eCO_(2)RR are reported,which achieved a maximum CO Faraday efficiency (FE_(CO)) of 97.7%(-0.7 V vs.RHE) in the H-type cell and maintained over 95% FE_(CO)at potentials from -0.18 to -0.73 V vs.RHE in the flow cell.Furthermore,the catalyst in the flow cell demonstrated a remarkably low onset potential of-0.14 V vs.RHE and the current density was approximately three times that of the H-type cell.Interestingly,XPS analysis indicates that carbon substrates containing defects have more pyridine-N content.DFT calculations and in-situ attenuated total reflection Fourier transform infrared support this finding by showing that the Ni-(N-C_(2))_(3) active sites with defect favors preferentially convert CO_(2)-to-CO.
基金supported by the National Science Foundation of China(8217070298,81773283)the Guangdong Basic and Applied Basic Research Foundation(2021A1515220011,China).
文摘Although cancer immunotherapy has made great strides in the clinic,it is still hindered by the tumor immunosuppressive microenvironment(TIME).The stimulator of interferon genes(STING)pathway which can modulate TIME effectively has emerged as a promising therapeutic recently.However,the delivery of most STING agonists,specifically cyclic dinucleotides(CDNs),is performed intratumorally due to their insufficient pharmacological properties,such as weak permeability across cell membranes and vulnerability to nuclease degradation.To expand the clinical applicability of CDNs,a novel pH-sensitive polycationic polymer-modified lipid nanoparticle(LNP-B)system was developed for intravenous delivery of CDNs.LNP-B significantly extended the circulation of CDNs and enhanced the accumulation of CDNs within the tumor,spleen,and tumor-draining lymph nodes compared with free CDNs thereby triggering the STING pathway of dendritic cells and repolarizing pro-tumor macrophages.These events subsequently gave rise to potent anti-tumor immune reactions and substantial inhibition of tumors in CT26 colon cancer-bearing mouse models.In addition,due to the acid-sensitive property of the polycationic polymer,the delivery system of LNP-B was more biocompatible and safer compared with lipid nanoparticles formulated with an indissociable cationic DOTAP(LNP-D).These findings suggest that LNP-B has great potential in the intravenous delivery of CDNs for tumor immunotherapy.
基金supported by the Cooperation Project between Xidian University and Shenzhen Fuxin Technology Company Ltd.(Electronic Design Automation Technology Innovation Center Project in Guangdong-Hong Kong Macao Greater Bay Area)well as by the Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(6142806230302).
文摘The standard design technology co-optimization(DTCO)involves frequent interactions between circuit design and process manufacturing,which requires several months.To assist designers in establishing a bridge between device parameters and circuit metrics efficiently,and provide guidance for parameter optimization in the early stages of circuit design.In this paper,we propose an efficient machine learning(ML)-enhanced DTCO framework.This framework achieves the co-optimization of device parameters and circuit metrics.We select the gate metal work function(WF)as the parameter to validate the effectiveness of our framework.And the ridge regression approach is used to bypass TCAD simulation,compact model extraction and cell library characterization.We reduces time consumption by at least 92%compared to traditional DTCO framework,while ensuring that errors of delay,internal power consumption and leakage power below 4 ps,0.035mJ,and 0.4μW,respectively.By adjusting the WF,we achieved a better balance between circuit delay and power consumption.This work contributes to designers exploring a broader design space and achieving a efficient DTCO flow.
基金supported by the National Natural Science Foundation of China(No.U24A20550,52273264)Youth Science Foundation Project ofChina(No.22409056)+1 种基金the Key Project of the Heilongjiang Provincial Natural Science Foundation(No.ZD2024B001)the Excellent Youth Project ofHeilongjiang Provincial Natural Science Foundation of China(No.LH2019B020).
文摘The high chloride(Cl)concentration in seawater presents a critical challenge for hydrogen production via seawater electrolysis by deactivating catalysts through active site passivation,highlighting the need for catalyst innovation.Herein,in situ boron-doped Co_(2)P/CoP(B-Co_(x)P)ultrathin nanosheet arrays are prepared as high-performance bifunctional electrocatalysts for seawater decomposition.Density functional theory(DFT)simulations,comprehensive characterizations,and in-situ analyses reveal that boron doping enhances electron density around Co centers,induces lattice distortions,and significantly elevates catalytic activity and durability.Moreover,boron doping reduces*Cl retention time at active sites—defined as the DFT-derived residence time of adsorbed Cl intermediates based on their adsorption energies—effectively mitigating Cl-induced poisoning.In a three-electrode system,B-Co_(x)P achieves exceptional bifunctional performance with overpotentials of 11 mV for hydrogen evolution reaction and 196 mV for oxygen evolution reaction to deliver 10 and 50 mA·cm^(-2),respectively—a result that showcases its superior bifunctional properties surpassing noble metal-based counterparts.In an alkaline electrolyzer,it delivers 1.56 A·cm^(-2)at 2.87 V for seawater electrolysis with outstanding stability over 500 h,preserving active site integrity via boron's robust protective role.This study defines a paradigm for designing advanced seawater electrolysis catalysts through a strategic in-situ doping approach.
基金supported by the National Natural Science Foundation of China(No.82273452).
文摘Pancreatic cancer,notorious for its late diagnosis and aggressive progression,poses a substantial challenge owing to scarce treatment alternatives.This review endeavors to furnish a holistic insight into pancreatic cancer,encompassing its epidemiology,genomic characterization,risk factors,diagnosis,therapeutic strategies,and treatment resistance mechanisms.We delve into identifying risk factors,including genetic predisposition and environmental exposures,and explore recent research advancements in precursor lesions and molecular subtypes of pancreatic cancer.Additionally,we highlight the development and application of multi-omics approaches in pancreatic cancer research and discuss the latest combinations of pancreatic cancer biomarkers and their efficacy.We also dissect the primary mechanisms underlying treatment resistance in this malignancy,illustrating the latest therapeutic options and advancements in the field.Conclusively,we accentuate the urgent demand for more extensive research to enhance the prognosis for pancreatic cancer patients.
基金J.Y.acknowledges support from the National Natural Science Foundation of China(No.51675069)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJ1703047)+2 种基金the Fundamental Research Funds for the Central Universities(Nos.2018CDQYGD0020 and cqu2018CDHB1A05)the Natural Science Foundation Projects of Chongqing(Nos.cstc2017shmsA40018 and cstc2018jcyjAX0076)Z.W.L.would like to thank the China Scholarship Council(No.201806050157)for its financial support.
文摘Flexible high-frequency vibration sensors are highly desirable in various real-world applications such as structural health monitoring,environmental monitoring,and the internet of things.However,developing a facile and effective method to fabricate vibration sensors simultaneously featuring high vibration frequency response-ability and flexibility remains a grand challenge.Herein,we report a flexible ultrahigh-frequency triboelectric vibration sensor(UTVS)prepared by a layer-particle-layer structure.Owing to the flexibility of the materials(i.e.,polyethylene terephthalate membrane)and the ultrahigh-frequency vibration response-ability of internal microparticles,the flexible UTVS exhibits an enhanced working frequency range of 3–170 kHz,which is much broader than previously reported triboelectric vibration sensors.Moreover,the UTVS can work not only in a flat state but also in a bent state due to its flexibility and the unique layer-particle-layer structural design.The UTVS shows nanometer-level vibration response-ability,omnidirectional response,stability in the temperature range of 10–70°C,good frequency resolution of 0.01 kHz,and excellent performance in burst vibration detection(e.g.,pencil lead break events and impact events from falling steel balls).With a collection of compelling features,the device is successfully demonstrated in vibration monitoring of curved structures(e.g.,real-time water pipeline leak monitoring).Such a flexible ultrahigh-frequency triboelectric vibration sensor holds great potential in a wide range of practical applications,such as communication,health care,and infrastructure monitoring.
基金This work was financially funded by the National Natural Science Foundation of China(Nos.31870139,21761132008).
文摘Owing to the stimulus-responsive and dynamic properties,magnetism-driven assembly of building blocks to form ordered structures is always a marvelous topic.While abundant magnetic assemblies have been developed in ideal physical and chemical conditions,it remains a challenge to realize magnetic assembly in complicated biological systems.Herein,we report a kind of biomacromolecule-modified magnetic nanosheets,which are mainly composed of superparamagnetic graphene oxide(Y-Fe2O3@GO),the tumor-targeting protein transferrin(TF),and the mitochondrion-targeting peptide(MitP).Such large-size nanosheets(0.5-1μm),noted as L-Fe2O3@GO-MitP-TF,can successfully in s itu assemble on the surface of tumor cells in a size-dependent and tumor cell-specific way,leading to severe inhibition of nutrient uptake for the tumor cells.More significantly,the nanostructures could efficiently confine the tumor cells,preventing both invasion and metastasis of tumor cells both in vitro and in vivo.Moreover,the 2D assemblies could remarkably disrupt the mitochondria and induce apoptosis,remarkably eradicating tumors under near-infrared(NIR)irradiation.This study sheds light on the development of new nano-systems for efficient cancer therapy and other biomedical applications.
文摘Crystalline nanostructures possess defects/vacancies that affect their physical and chemical properties. In this regard, the electronic structure of materials can be effectively regulated through defect engineering; therefore, the correlation between defects/vacancies and the properties of a material has attracted extensive attention. Here, we report the synthesis of Bi2S3 microspheres by nanorod assemblies with exposed {211} facets, and the investigation of the types and concentrations of defects/vacancies by means of positron annihilation spectrometry. Our studies revealed that an increase in the calcined temperature, from 350 to 400 ℃, led the predominant defect/vacancy densities to change from isolated bismuth vacancies (VBi) to septuple Bi3+-sulfur vacancy associates (VBiBiBiSSSS). Furthermore, the concentration of septuple BiB+-sulfur vacancy associates increased as the calcined temperature was increased from 400 to 450 ℃. The characterized transient photocurrent spectrum demonstrates that the photocurrent values closely correlate with the types and concentrations of the predominant defects/vacancies. Our theoretical computation, through first principles, showed that VBiBiBiSSSS strongly absorbs I2(sol), easily desorbs I-(sol), and enhances the electrocatalytic activity of the nanostructures.