Background:Metformin has pleiotropic effects beyond glucose reduction,including tumor inhibition and immune regulation.It enhanced the anti-tumor effects of programmed cell death protein 1(PD-1)inhibitors in serine/th...Background:Metformin has pleiotropic effects beyond glucose reduction,including tumor inhibition and immune regulation.It enhanced the anti-tumor effects of programmed cell death protein 1(PD-1)inhibitors in serine/threonine kinase 11(STK11)mutant non-small cell lung cancer(NSCLC)through an axis inhibition protein 1(AXIN1)-dependent manner.However,the alterations of tumor metabolism and metabolites upon metformin administration remain unclear.Methods:We performed untargeted metabolomics using liquid chromatography(LC)-mass spectrometry(MS)/MS system and conducted cell experiments to verify the results of bioinformatics analysis.Results:According to the Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway database,most metabolites were annotated into metabolism,including nucleotide metabolism.Next,the differentially expressed metabolites in H460(refers to H460 cells),H460_met(refers to metformin-treated H460 cells),and H460_KO_met(refers to metformin-treated Axin1-/-H460 cells)were distributed into six clusters based on expression patterns.The clusters with a reversed expression pattern upon metformin treatment were selected for further analysis.We screened out metabolic pathways through KEGG pathway enrichment analysis and found that multiple nucleotide metabolites enriched in this pathway were upregulated.Furthermore,these metabolites enhanced the cytotoxicity of activated T cells on H460 cells in vitro and can activate the stimulator of the interferon genes(STING)pathway independently of AXIN1.Conclusion:Relying on AXIN1,metformin upregulated multiple nucleotide metabolites which promoted STING signaling and the killing of activated T cells in STK11 mutant NSCLC,indicating a potential immunotherapeutic strategy for STK11 mutant NSCLC.展开更多
CRISPR-Cas systems provide the small RNA-based adaptive immunity to defend against invasive genetic elements in archaea and bacteria.Organisms of Sulfolobales,an order of thermophilic acidophiles belonging to the Cren...CRISPR-Cas systems provide the small RNA-based adaptive immunity to defend against invasive genetic elements in archaea and bacteria.Organisms of Sulfolobales,an order of thermophilic acidophiles belonging to the Crenarchaeotal Phylum,usually contain both type I and typeⅢCRISPR-Cas systems.Two species,Saccharolobus solfataricus and Sulfolobus islandicus,have been important models for CRISPR study in archaea,and knowledge obtained from these studies has greatly expanded our understanding of molecular mechanisms of antiviral defense in all three steps:adaptation,expression and crRNA processing,and interference.Four subtypes of CRISPR-Cas systems are common in these organisms,including I-A,I-D,Ⅲ-B,andⅢ-D.These cas genes form functional modules,e.g.,all genes required for adaptation and for interference in the I-A immune system are clustered together to form aCas and i Cas modules.Genetic assays have been developed to study mechanisms of adaptation and interference by different CRISPR-Cas systems in these model archaea,and these methodologies are useful in demonstration of the protospacer-adjacent motif(PAM)-dependent DNA interference by I-A interference modules and multiple interference activities byⅢ-B Cmr systems.Ribonucleoprotein effector complexes have been isolated for SulfolobalesⅢ-B andⅢ-D systems,and their biochemical characterization has greatly enriched the knowledge of molecular mechanisms of these novel antiviral immune responses.展开更多
基金People’s Hospital of Xuyong County-Southwest Medical University Science and Technology Strategic Cooperation Project(2023XYXNYD05)Guangdong Association of Clinical Trials(GACT)/Chinese Thoracic Oncology Group(CTONG)and Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer(2017B030314120)Natural Science Foundation of Chongqing Municipality(CSTB2023NSCQ-MSX0554).
文摘Background:Metformin has pleiotropic effects beyond glucose reduction,including tumor inhibition and immune regulation.It enhanced the anti-tumor effects of programmed cell death protein 1(PD-1)inhibitors in serine/threonine kinase 11(STK11)mutant non-small cell lung cancer(NSCLC)through an axis inhibition protein 1(AXIN1)-dependent manner.However,the alterations of tumor metabolism and metabolites upon metformin administration remain unclear.Methods:We performed untargeted metabolomics using liquid chromatography(LC)-mass spectrometry(MS)/MS system and conducted cell experiments to verify the results of bioinformatics analysis.Results:According to the Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway database,most metabolites were annotated into metabolism,including nucleotide metabolism.Next,the differentially expressed metabolites in H460(refers to H460 cells),H460_met(refers to metformin-treated H460 cells),and H460_KO_met(refers to metformin-treated Axin1-/-H460 cells)were distributed into six clusters based on expression patterns.The clusters with a reversed expression pattern upon metformin treatment were selected for further analysis.We screened out metabolic pathways through KEGG pathway enrichment analysis and found that multiple nucleotide metabolites enriched in this pathway were upregulated.Furthermore,these metabolites enhanced the cytotoxicity of activated T cells on H460 cells in vitro and can activate the stimulator of the interferon genes(STING)pathway independently of AXIN1.Conclusion:Relying on AXIN1,metformin upregulated multiple nucleotide metabolites which promoted STING signaling and the killing of activated T cells in STK11 mutant NSCLC,indicating a potential immunotherapeutic strategy for STK11 mutant NSCLC.
基金grants from the Chinese National Transgenic Science and Technology Program(2019ZX08010003 to QS)the National Natural Science Foundation of China(31771380 to QS)+1 种基金the Qingdao Applied Research Fund for postdoctoral researchers(62450079311107 to ZY)the State Key Laboratory of Microbial Technology and Shandong University。
文摘CRISPR-Cas systems provide the small RNA-based adaptive immunity to defend against invasive genetic elements in archaea and bacteria.Organisms of Sulfolobales,an order of thermophilic acidophiles belonging to the Crenarchaeotal Phylum,usually contain both type I and typeⅢCRISPR-Cas systems.Two species,Saccharolobus solfataricus and Sulfolobus islandicus,have been important models for CRISPR study in archaea,and knowledge obtained from these studies has greatly expanded our understanding of molecular mechanisms of antiviral defense in all three steps:adaptation,expression and crRNA processing,and interference.Four subtypes of CRISPR-Cas systems are common in these organisms,including I-A,I-D,Ⅲ-B,andⅢ-D.These cas genes form functional modules,e.g.,all genes required for adaptation and for interference in the I-A immune system are clustered together to form aCas and i Cas modules.Genetic assays have been developed to study mechanisms of adaptation and interference by different CRISPR-Cas systems in these model archaea,and these methodologies are useful in demonstration of the protospacer-adjacent motif(PAM)-dependent DNA interference by I-A interference modules and multiple interference activities byⅢ-B Cmr systems.Ribonucleoprotein effector complexes have been isolated for SulfolobalesⅢ-B andⅢ-D systems,and their biochemical characterization has greatly enriched the knowledge of molecular mechanisms of these novel antiviral immune responses.