LiNiO_(2)(LNO)is one of the most promising cathode materials for lithium-ion batteries.Tungsten element in enhancing the stability of LNO has been researched extensively.However,the understanding of the specific dopin...LiNiO_(2)(LNO)is one of the most promising cathode materials for lithium-ion batteries.Tungsten element in enhancing the stability of LNO has been researched extensively.However,the understanding of the specific doping process and existing form of W are still not perfect.This study proposes a lithium-induced grain boundary phase W doping mechanism.The results demonstrate that the introduced W atomsfirst react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles.With the increase of lithium ratio,W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping.The feasibility of grain boundary phase doping is verified byfirst principles calculation.Furthermore,it is found that the Li2WO4 grain boundary phase is an excellent lithium ion conductor,which can protect the cathode surface and improve the rate performance.The doped W can alleviate the harmful H2↔H3 phase transition,thereby inhibiting the generation of microcracks,and improving the electrochemical performance.Consequently,the 0.3 wt%W-doped sample provides a significant improved capacity retention of 88.5%compared with the pristine LNO(80.7%)after 100 cycles at 2.8–4.3 V under 1C.展开更多
Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transiti...Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transition metal substitution to reduce the Co content.However,the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate.In this work,spray pyrolysis was used to prepare LiNi_(0.9)Co_(0.1-x)W_(x)O_(2)(LNCW).In this regard,the pyrolysis behavior of ammonium metatungstate was analyzed,together with the substitu-tion of W for Co.With the possibility of spray pyrolysis,the Ni-Co-W-containing oxide precursor presents a homogeneous distribution of metal elements,which is beneficial for the uniform substitution of W in the final materials.It was observed that with W substitution,the size of primary particles decreased from 338.06 to 71.76 nm,and cation disordering was as low as 3.34%.As a consequence,the pre-pared LNCW exhibited significantly improved electrochemical performance.Under optimal conditions,the lithium-ion battery assembled with LiNi_(0.9)Co_(0.0925)W_(0.0075)O_(2)(LNCW-0.75mol%)had an improved capacity retention of 82.7%after 200 cycles,which provides insight in-to the development of Ni-rich low-Co materials.This work presents that W can compensate for the loss caused by Co deficiency to a cer-tain extent.展开更多
基金supported by the National Natural Science Foundation of China(No.52122407,No.52174285,52404317)the Science and Technology Innovation Program of Hunan Province(No.2022RC3048).
文摘LiNiO_(2)(LNO)is one of the most promising cathode materials for lithium-ion batteries.Tungsten element in enhancing the stability of LNO has been researched extensively.However,the understanding of the specific doping process and existing form of W are still not perfect.This study proposes a lithium-induced grain boundary phase W doping mechanism.The results demonstrate that the introduced W atomsfirst react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles.With the increase of lithium ratio,W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping.The feasibility of grain boundary phase doping is verified byfirst principles calculation.Furthermore,it is found that the Li2WO4 grain boundary phase is an excellent lithium ion conductor,which can protect the cathode surface and improve the rate performance.The doped W can alleviate the harmful H2↔H3 phase transition,thereby inhibiting the generation of microcracks,and improving the electrochemical performance.Consequently,the 0.3 wt%W-doped sample provides a significant improved capacity retention of 88.5%compared with the pristine LNO(80.7%)after 100 cycles at 2.8–4.3 V under 1C.
基金supported by the National Natural Science Foundation of China(No.52122407)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC3048)the Key Research and Development Program of Yunnan Province,China(No.202103AA080019).
文摘Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transition metal substitution to reduce the Co content.However,the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate.In this work,spray pyrolysis was used to prepare LiNi_(0.9)Co_(0.1-x)W_(x)O_(2)(LNCW).In this regard,the pyrolysis behavior of ammonium metatungstate was analyzed,together with the substitu-tion of W for Co.With the possibility of spray pyrolysis,the Ni-Co-W-containing oxide precursor presents a homogeneous distribution of metal elements,which is beneficial for the uniform substitution of W in the final materials.It was observed that with W substitution,the size of primary particles decreased from 338.06 to 71.76 nm,and cation disordering was as low as 3.34%.As a consequence,the pre-pared LNCW exhibited significantly improved electrochemical performance.Under optimal conditions,the lithium-ion battery assembled with LiNi_(0.9)Co_(0.0925)W_(0.0075)O_(2)(LNCW-0.75mol%)had an improved capacity retention of 82.7%after 200 cycles,which provides insight in-to the development of Ni-rich low-Co materials.This work presents that W can compensate for the loss caused by Co deficiency to a cer-tain extent.